The design and implementation of the EM Global Optimizer

H.E. Bal

Vrije Universiteit
Wiskundig Seminarium, Amsterdam

ABSTRACT

The EM Global Optimizer is part of the Amsterdam Com-
piler Kit, a toolkit for making retargetable compilers.
It optimizes the intermediate code common to all compilers
of the toolkit (EM), so it can be used for all programming
languages and all processors supported by the kit.

The optimizer 1is based on well-understood concepts

like control flow analysis and data flow analysis. It per-
forms the following optimizations: Inline Substitution,
Strength Reduction, Common Subexpression Elimination,

Stack Pollution, Cross Jumping, Branch Optimization, Copy
Propagation, Constant Propagation, Dead Code Elimination
and Register Allocation.

This report describes the design of the optimizer and
several of its implementation issues.



1. Introduction

The EM Global Optimizer is part of a software toolkit for making

production-quality retargetable compilers. This toolkit, called the
Amsterdam Compiler Kit [Tane8la, Tane83b] runs under the Unix* operat-
ing system.
The main design philosophy of the toolkit is to use a language- and
machine-independent intermediate code, called EM. [Tane83a] The basic
compilation process can be split up into two parts. A language-spe-
cific front end translates the source program into EM. A machine-spe-
cific back end transforms EM to assembly code of the target machine.

The global optimizer is an optional phase of the compilation pro-
cess, and can be used to obtain machine code of a higher quality. The
optimizer transforms EM-code to better EM-code, so it comes between
the front end and the back end. It can be used with any combination
of languages and machines, as far as they are supported by the com-
piler kit.

This report describes the design of the global optimizer and sev-

eral of its implementation issues. Measurements can be found in.
[Bal86a]

This work was supported by the Stichting Technische Wetenschappen (STW)
under grant VWI00.0001.

*Unix is a Trademark of Bell Laboratories



2. Overview of the global optimizer

2.1. The ACK compilation process

The EM Global Optimizer is one of three optimizers that are part
of the Amsterdam Compiler Kit (ACK). The phases of ACK are:

1. A Front End translates a source program to EM

2. The Peephole Optimizer [a] reads EM code and produces ’better’ EM
code. It performs a number of optimizations (mostly peephole
optimizations) such as constant folding, strength reduction and
unreachable code elimination.

The Global Optimizer further improves the EM code.

4. The Code Generator transforms EM to assembly code of the target
computer.

5. The Target Optimizer improves the assembly code.
6. An Assembler/Loader generates an executable file.

For a more extensive overview of the ACK compilation process, we refer
to. [Tane8la, Tane83b]

The input of the Global Optimizer may consist of files and
libraries. Every file or module in the library must contain EM code in
Compact Assembly Language format. [Tane83a, section 11.2] The output

consists of one such BEM file. The input files and libraries together
need not constitute an entire program, although as much of the program
as possible should be supplied. The more information about the pro-

gram the optimizer gets, the better its output code will be.

The Global Optimizer is language- and machine-independent, i.e. it
can be used for all languages and machines supported by ACK. Yet, it
puts some unavoidable restrictions on the EM code produced by the

Front End (see below). It must have some knowledge of the target
machine. This knowledge is expressed in a machine description table
which is passed as argument to the optimizer. This table does not

contain very detailed information about the target (such as its
instruction set and addressing modes).

2.2. The EM code

The definition of EM, the intermediate code of all ACK compilers,
is given in a separate document. [Tane83a] We will only discuss some
features of EM that are most relevant to the Global Optimizer.

EM is the assembly code of a virtual stack machine. All operations
are performed on the top of the stack. For example, the statement "A
:= B + 3" may be expressed in EM as:

LOL -4 -- push local variable B

LOC 3 -- push constant 3

ADI 2 -- add two 2-byte items on top of
-- the stack and push the result

STL -2 -- pop A

So EM is essentially a postfix code.

EM has a rich instruction set, containing several arithmetic and
logical operators. It also contains special-case instructions (such
as INCrement).



EM has global (external) variables, accessible by all procedures and

local variables, accessible by a few (nested) procedures. The local
variables of a lexically enclosing procedure may be accessed via a static
link. BEM has instructions to follow the static chain. There are EM
instruction to allow a procedure to access 1its local variables
directly (such as LOL and STL above). Local variables are referenced
via an offset in the stack frame of the procedure, rather than by
their names (e.g. -2 and -4 above). The EM code does not contain the

(source language) type of the variables.

All structured statements in the source program are expressed in
low level jump instructions. Besides conditional and unconditional
branch instructions, there are two case instructions (CSA and CSB), to
allow efficient translation of case statements.

2.3. Requirements on the EM input

As the optimizer should be wuseful for all languages, it clearly
should not put severe restrictions on the EM code of the input. There
is, however, one immovable requirement: it must be possible to deter-
mine the flow of control of the input program. As virtually all global
optimizations are based on control flow information, the optimizer
would be totally powerless without it. For this reason we restrict
the usage of the case jump instructions (CSA/CSB) of EM. Such an
instruction is always called with the address of a case descriptor on
top the the stack. [Tane83a section 7.4] This descriptor contains the
labels of all possible destinations of the jump. We demand that all
case descriptors are allocated in a global data fragment of type ROM,
i.e. the case descriptors may not be modifyable. Furthermore, any
case instruction should be immediately preceded by a LAE (Load Address
External) instruction, that loads the address of the descriptor, so
the descriptor can be uniquely identified.

The optimizer will work improperly if the user deceives the con-
trol flow. We will give two methods to do this.

In "C" the notorious library routines "setjmp" and "longjmp"
[Kern79a] may be used to jump out of a procedure, but can also be used
for a number of other stuffy purposes, for example, to create an extra
entry point in a loop.

while (condition) {
setjmp(buf);

}

longjmp (buf);
The invocation to longjmp actually is a jump to the place of the last
call to setjmp with the same argument (buf). As the calls to setjmp
and longjmp are indistinguishable from normal procedure calls, the
optimizer will not see the danger. No need to say that several loop
optimizations will behave unexpectedly when presented with such patho-
logical input.

Another way to deceive the flow of control is by using exception

handling routines. Ada* has clearly recognized the dangers of



exception handling, but other languages (such as PL/I) have not.
[Ichb79a]

The optimizer will be more effective if the EM input contains some
extra information about the source program. Especially the register mes-
sage 1s very important. These messages indicate which local variables
may never be accessed indirectly. Most optimizations benefit signifi-
cantly by this information.

The Inline Substitution technique needs to know how many bytes of
formal parameters every procedure accesses. Only calls to procedures
for which the EM code contains this information will be substituted in
line.

2.4. Structure of the optimizer

The Global Optimizer is organized as a number of phases, each one
performing some task. The main structure is as follows:

IC the Intermediate Code construction phase transforms EM into the
intermediate code (ic) of the optimizer

CF the Control Flow phase extends the ic with control flow informa-
tion and interprocedural information

OPTs zero or more optimization phases, each one performing one or more
related optimizations

CA the Compact Assembly phase generates Compact Assembly Language EM
code out of ic.

An important issue in the design of a global optimizer 1is the
interaction between optimization techniques. It is often advantageous
to combine several techniques in one algorithm that takes into account
all interactions between them. Ideally, one single algorithm should
be developed that does all optimizations simultaneously and deals with
all possible interactions. In practice, such an algorithm is still
far out of reach. Instead some rather ad hoc (albeit important) com-
binations are chosen, such as Common Subexpression Elimination and
Register Allocation. [Prab80a, Seth70a]

In the Em Global Optimizer there is one separate algorithm for
every technique. Note that this does not mean that all techniques are
independent of each other.

In principle, the optimization phases can be run in any order; a
phase may even be run more than once. However, the following rules
should be obeyed:

- the Live Variable analysis phase (LV) must be run prior to Register
Allocation (RA), as RA uses information outputted by LV

- RA should be the last phase; this is a consequence of the way the
interface between RA and the Code Generator is defined.

The ordering of the phases has significant impact on the quality of the
produced code. In [Leve79a] two kinds of phase ordering problems are
distinguished. If two techniques A and B both take away opportunities
of each other, there is a "negative" ordering problem. If, on the
other hand, both A and B introduce new optimization opportunities for
each other, the problem is called "positive". In the Global Optimizer

* Ada is a registered trademark of the U.S. Government (Ada Joint Program
Office) .



the following interactions must be taken into account:

- Inline Substitution (IL) may create new opportunities for most
other techniques, so it should be run as early as possible

- Use Definition analysis (UD) may introduce opportunities for LV.
- Strength Reduction may create opportunities for UD

The optimizer has a default phase ordering, which can be changed by
the user.

2.5. Structure of this document

The remaining chapters of this document each describe one phase of
the optimizer. For every phase, we describe its task, its design, its
implementation, and 1its source files. The latter two sections are
intended to aid the maintenance of the optimizer and can be skipped by
the initial reader.

2.6. References

There are very few modern textbooks on optimization. Chapters 12,
13, and 14 of [Aho78a] are a good introduction to the subject. Wulf
et. al. [Wulf75a] describe one specific optimizing (Bliss) compiler.
Anklam et. al. [Ankl82a] discuss code generation and optimization in

compilers for one specific machine (a Vax-11). Kirchgaesner et. al.
[Kirc83a] present a brief description of many optimizations; the
report also contains a lengthy (over 60 pages) bibliography.

The number of articles on optimization is quite impressive. The
Lowry and Medlock paper on the Fortran H compiler [Lowr69a] is a clas-
sical one. Other papers on global optimization are. [Faim80a,

Perk79a, Harr79a, More79a, Mint79a] Freudenberger [Freu83a] describes
an optimizer for a Very High Level Language (SETL). The Production-
Quality Compiler-Compiler (PQCC) project uses very sophisticated com-
piler techniques, as described in. [Leve80a, Leve79a, Wulf80a]

Several Ph.D. theses are dedicated to optimization. Davidson
[Davi8la] outlines a machine-independent peephole optimizer that
improves assembly code. Katkus [Katk73a] describes how efficient pro-

grams can be obtained at little cost by optimizing only a small part
of a program. Photopoulos [Phot8la] discusses the idea of generating
interpreted intermediate code as well as assembly code, to obtain pro-
grams that are both small and fast. Shaffer [Shaf78a] describes the
theory of automatic subroutine generation. Leverett [Leve8la] deals
with register allocation in the PQCC compilers.

References to articles about specific optimization techniques will
be given in later chapters.



3. The Intermediate Code and the IC phase

In this chapter the intermediate code of the EM global optimizer
will be defined. The ’Intermediate Code construction’ phase (IC),
which builds the initial intermediate code from EM Compact Assembly
Language, will be described.

3.1. Introduction

The EM global optimizer is a multi pass program, hence there is a

need for an intermediate code. Usually, programs in the Amsterdam
Compiler Kit use the Compact Assembly Language format [Tane83a, sec-
tion 11.2] for this purpose. Although this code has some convenient

features, such as being compact, it is quite unsuitable in our case,
because of a number of reasons. At first, the code lacks global infor-
mation about whole procedures or whole basic blocks. Second, it uses
identifiers (’names’) to bind defining and applied occurrences of proce-
dures, data labels and instruction labels. Although this is usual in
high level programming languages, it 1is awkward in an intermediate
code that must be read many times. Each pass of the optimizer would
have to incorporate an identifier look-up mechanism to associate a
defining occurrence with each applied occurrence of an identifier.
Finally, EM programs are used to declare blocks of bytes, rather than
variables. A “hol 6’ instruction may be used to declare three 2-byte
variables. Clearly, the optimizer wants to deal with variables, and
not with rows of bytes.

To overcome these problems, we have developed a new intermediate
code. This code does not merely consist of the EM instructions, but
also contains global information in the form of tables and graphs.
Before describing the intermediate code we will first leap aside to
outline the problems one generally encounters when trying to store
complex data structures such as graphs outside the program, i.e. in a
file. We trust this will enhance the comprehensibility of the interme-
diate code definition and the design and implementation of the IC
phase.

3.2. Representation of complex data structures in a sequential file

Most programmers are quite used to deal with complex data struc-
tures, such as arrays, graphs and trees. There are some particular
problems that occur when storing such a data structure in a sequential
file. We call data that is kept in main memory internal ,as opposed to
external data that is kept in a file outside the program.

We assume a simple data structure of a scalar type (integer, floating
point number) has some known external representation. An array having
elements of a scalar type can be represented externally easily, by
successively representing its elements. The external representation
may be preceded by a number, giving the length of the array. Now, con-
sider a linear, singly linked list, the elements of which look like:

record
data: scalar_type;
next: pointer_type;
end;

It is significant to note that the "next" fields of the elements only



have a meaning within main memory. The field contains the address of
some location in main memory. If a list element is written to a file
in some program, and read by another program, the element will be
allocated at a different address in main memory. Hence this address
value is completely useless outside the program.

One may represent the list by ignoring these "next" fields and storing

the data items in the order they are linked. The "next" fields are
represented implicitly. When the file is read again, the same list can be
reconstructed. In order to know where the external representation of

the list ends, it may be useful to put the length of the list in front
of it.

Note that arrays and linear lists have the same external representa-
tion.

A doubly linked, linear list, with elements of the type:

record
data: scalar_type;
next,
previous: pointer_type;
end

can be represented in precisely the same way. Both the "next" and the
"previous" fields are represented implicitly.

Next, consider a binary tree, the nodes of which have type:

record
data: scalar_type;
left,
right: pointer_type;
end

Such a tree can be represented sequentially, by storing its nodes in
some fixed order, e.g. prefix order. A special null data item may be
used to denote a missing left or right son. For example, let the
scalar type be integer, and let the null item be 0. Then the tree of
fig. 3.1(a) can be represented as in fig. 3.1(b).

Fig. 3.1(a) A binary tree

4912003800100124050061000

Fig. 3.1(b) Its sequential representation

We are still able to represent the pointer fields ("left" and "right")
implicitly.



Finally, consider a general graph , where each node has a "data"
field and pointer fields, with no restriction on where they may point
to. Now we’re at the end of our tale. There is no way to represent
the pointers implicitly, like we did with lists and trees. In order

to represent them explicitly, we use the following scheme. Every node
gets an extra field, containing some unique number that identifies the
node. We call this number its id. A pointer is represented externally
as the id of the node it points to. When reading the file we use a ta-
ble that maps an id to the address of its node. In general this table
will not be completely filled in until we have read the entire external
representation of the graph and allocated internal memory locations
for every node. Hence we cannot reconstruct the graph in one scan.
That 1is, there may be some pointers from node A to B, where B is
placed after A in the sequential file than A. When we read the node of
A we cannot map the id of B to the address of node B, as we have not
yet allocated node B. We can overcome this problem if the size of

every node is known in advance. In this case we can allocate memory
for a node on first reference. Else, the mapping from id to pointer
cannot be done while reading nodes. The mapping can be done either in

an extra scan or at every reference to the node.

3.3. Definition of the intermediate code

The intermediate code of the optimizer consists of several compo-
nents:

- the object table
- the procedure table
- the em code
- the control flow graphs
- the loop table
These components are described in the next sections. The syntac-

tic structure of every component is described by a set of context free
syntax rules, with the following conventions:

X a non-terminal symbol

A a terminal symbol (in capitals)
Xx: ab c; a grammar rule

al b a or b

(a)+ 1 or more occurrences of a

{a} 0 or more occurrences of a

3.3.1. The object table

EM programs declare blocks of bytes rather than (global) vari-
ables. A typical program may declare "HOL 7780’ to allocate space for
8 I/0 buffers, 2 large arrays and 10 scalar variables. The optimizer
wants to deal with objects like variables, buffers and arrays and cer-
tainly not with huge numbers of bytes. Therefore the intermediate
code contains information about which global objects are used. This
information can be obtained from an EM program by just looking at the
operands of instruction such as LOE, LAE, LDE, STE, SDE, INE, DEE and
ZRE.



-10-

The object table consists of a list of datablock entries. Each
such entry represents a declaration like HOL, BSS, CON or ROM. There
are five kinds of datablock entries. The fifth kind, UNKNOM, denotes a
declaration in a separately compiled file that is not made available to
the optimizer. Each datablock entry contains the type of the block,
its size, and a description of the objects that belong to it. If it
is a rom, it also contains a list of values given as arguments to the
rom instruction, provided that this list contains only integer num-
bers. An object has an offset (within its datablock) and a size. The
size need not always be determinable. Both datablock and object con-
tain a unique identifying number (see previous section for their use).

syntax
object_table:
{datablock} ;
datablock:
D_ID -- unique identifying number
PSEUDO -- one of ROM,CON,BSS,HOL, UNKNOMN
SIZE -- # bytes declared
FLAGS
{value} -- contents of rom
{object} ; -- objects of the datablock
object:
O_ID -- unique identifying number
OFFSET -- offset within the datablock
SIZE ; -- size of the object in bytes
value:
argument ;
A data block has only one flag: "external", indicating whether the data
label is externally visible. The syntax for "argument" will be given

later on (see em_text).

3.3.2. The procedure table

The procedure table contains global information about all proce-
dures that are made available to the optimizer and that are needed by
the EM program. (Library units may not be needed, see section 3.5).
The table has one entry for every procedure.



-11-

syntax

procedure_table:
{procedure}

procedure:
P_ID -- unique identifying number
#LABELS -- number of instruction labels
#LOCALS -- number of bytes for locals
#FORMALS -- number of bytes for formals
FLAGS -- flag bits
calling -- procedures called by this one
change -- info about global variables changed
use ; -- info about global variables used
calling:
{P_ID} ; -- procedures called
change:
ext -- external variables changed
FLAGS ;
use:
FLAGS ;
ext:
{O_ID} -- a set of objects

The number of bytes of formal parameters accessed by a procedure
is determined by the front ends and passed via a message (parameter
message) to the optimizer. If the front end is not able to determine
this number (e.g. the parameter may be an array of dynamic size or the
procedure may have a variable number of arguments) the attribute con-
tains the value *UNKNOWMN_SIZE’ .

A procedure has the following flags:

- external: true if the proc. is externally visible
- bodyseen: true if its code is available as EM text

- calunknown: true if it calls a procedure that has its bodyseen flag
not set

- environ: true if it uses or changes a (non-global) variable in a
lexically enclosing procedure

- Ipi: true if is used as operand of an Ipi instruction, so it may
be called indirect

The change and use attributes both have one flag: "indirect", indicat-
ing whether the procedure does a ’'use indirect’ or a ’store indirect’
(indirect means through a pointer).

3.3.3. The EM text

The EM text contains the EM instructions. Every EM instruction
has an operation code (opcode) and O or 1 operands. EM pseudo
instructions can have more than 1 operand. The opcode is just a small
(8 bit) integer.

There are several kinds of operands, which we will refer to as types.
Many EM instructions can have more than one type of operand. The
types and their encodings in Compact Assembly Language are discussed
extensively in. [Tane83a, section 11.2] Of special interest is the way
numeric values are represented. Of prime importance is the machine



-12-

independency of the representation. Ultimately, one could store every

integer just as a string of the characters 0’ to ’9°. As doing
arithmetic on strings is awkward, Compact Assembly Language allows
several alternatives. The main idea is to look at the value of the
integer. Integers that fit in 16, 32 or 64 bits are represented as a
row of resp. 2, 4 and 8 bytes, preceded by an indication of how many
bytes are used. Longer integers are represented as strings; this is
only allowed within pseudo instructions, however. This concept works

very well for target machines with reasonable word sizes. At present,
most ACK software cannot be used for word sizes higher than 32 bits,
although the handles for using larger word sizes are present in the
design of the EM code. In the intermediate code we essentially use
the same ideas. We allow three representations of integers.

- integers that fit in a short are represented as a short

- integers that fit in a long but not in a short are represented as
longs
- all remaining integers are represented as strings (only allowed in
pseudos) .
The terms short and long are defined in [Ritc78a, section 4] and depend
only on the source machine (i.e. the machine on which ACK runs), not
on the target machines. For historical reasons a long will often be
called an offset.
Operands can also be instruction labels, objects or procedures.
Instruction labels are denoted by a label identifier, which can be dis-
tinguished from a normal identifier.

The operand of a pseudo instruction can be a list of arguments. Argu-
ments can have the same type as operands, except for the type short,

which is not used for arguments. Furthermore, an argument can be a
string or a string representation of a signed integer, unsigned inte-
ger or floating point number. If the number of arguments is not fully

determined by the pseudo instruction (e.g. a ROM pseudo can have any
number of arguments), then the list is terminated by a special argu-
ment of type CEND.



-13-

syntax
em_text:
{line} ;
line:
INSTR -- opcode
OPTYPE -- operand type
operand ;
operand:
empty | -- OPTYPE = NO
SHORT | -- OPTYPE = SHORT
OFFSET | -- OPTYPE = OFFSET
LAB_ID | -- OPTYPE = INSTRLAB
O_ID | -- OPTYPE = OBJECT
P_ID | -- OPTYPE = PROCEDURE
{argument} ; -- OPTYPE = LIST
argument :
ARGTYPE
arg
arg:
empty | -- ARGTYPE = CEND
OFFSET |
LAB_ID |
O_ID |
P_ID |
string | -- ARGTYPE = STRING
const ; -- ARGTYPE = ICON,UCON or FCON
string:
LENGTH -- number of characters
{CHARACTER} ;
const:
SIZE -- number of bytes
string ; -- string representation of (un)signed

-- or floating point constant

3.3.4. The control flow graphs

Each procedure can be divided into a number of basic blocks. A
basic block is a piece of code with no jumps in, except at the begin-
ning, and no jumps out, except at the end.

Every basic block has a set of successors, which are basic blocks
that can follow it immediately in the dynamic execution sequence. The
predecessors are the basic blocks of which this one is a successor.
The successor and predecessor attributes of all basic blocks of a sin-
gle procedure are said to form the control flow graph of that proce-
dure.

Another important attribute is the immediate dominator. A basic
block B dominates a block C if every path in the graph from the proce-
dure entry block to C goes through B. The immediate dominator of C is
the closest dominator of C on any path from the entry block. (Note
that the dominator relation is transitive, so the immediate dominator
is well defined.)

A basic block also has an attribute containing the identifiers of
every loop that the block belongs to (see next section for loops).




-14-

syntax

control_flow_graph:
{basic_block} ;
basic_block:

B_ID -- unique identifying number
#INSTR -- number of BEM instructions
succ
pred
idom -- immediate dominator
loops -- set of loops
FLAGS ; -- flag bits
succ:
{B_ID} ;
pred:
{B_ID} ;
idom:
B_ID ;
loops:
{LP_ID}

s

The flag bits can have the values ’firm
explained below.

and ’strong’, which are

3.3.5. The loop tables

Every procedure has an associated loop table containing informa-
tion about all the loops in the procedure. Loops can be detected by a
close inspection of the control flow graph. The main idea is to look
for two basic blocks, B and C, for which the following holds:

- B is a successor of C
- B is a dominator of C

B is called the loop entry and C is called the loop end. Intuitively,
C contains a jump backwards to the beginning of the loop (B).

A loop LI is said to be nested within loop L2 if all basic blocks
of L1 are also part of L2. It is important to note that loops could
originally be written as a well structured for -or while loop or as a
messy goto loop. Hence loops may partly overlap without one being
nested inside the other. The nesting level of a loop is the number of
loops in which it is nested (so it is O for an outermost loop). The
details of loop detection will be discussed later.

It is often desirable to know whether a basic block gets executed
during every iteration of a loop. This leads to the following defini-
tions:

- A basic block B of a loop L is said to be a firm block of L if B is
executed on all successive iterations of L, with the only possible
exception of the last iteration.

- A basic block B of a loop L is said to be a strong block of L if B
is executed on all successive iterations of L.

Note that a strong block is also a firm block. If a block is part of a
conditional statement, it 1is neither strong nor firm, as it may be
skipped during some iterations (see Fig. 3.2).



-15-

loop
if condl then
-- this code will not
-- result in a firm or strong block
end if;
. -- strong (always executed)
exit when cond2;
. -- firm (not executed on last iteration).
end loop;

Fig. 3.2 Example of firm and strong block

syntax

looptable:
{loop} ;

loop:
LP_ID -- unique identifying number
LEVEL -- loop nesting level
entry -- loop entry block
end ;

entry:
B_ID ;

end:
B_ID ;

3.4. External representation of the intermediate code

The syntax of the intermediate code was given in the previous sec-
tion. In this section we will make some remarks about the representa-
tion of the code in sequential files.

We use sequential files in order to avoid the bookkeeping of complex
file indices. As a consequence of this decision we can’t store all
components of the intermediate code in one file. If a phase wishes to
change some attribute of a procedure, or wants to add or delete entire
procedures (inline substitution may do the latter), the procedure ta-
ble will only be fully updated after the entire EM text has been
scanned. Yet, the next phase undoubtedly wants to read the procedure
table before it starts working on the EM text. Hence there is an
ordering problem, which can be solved easily by putting the procedure
table in a separate file. Similarly, the data block table is kept in a
file of its own.

The control flow graphs (CFGs) could be mixed with the BEM text.
Rather, we have chosen to put them in a separate file too. The control
flow graph file should be regarded as a file that imposes some structure
on the BEM-text file, just as an overhead sheet containing a picture of
a Flow Chart may be put on an overhead sheet containing statements.
The loop tables are also put in the CFG file. A loop imposes an extra
structure on the CFGs and hence on the EM text. So there are four
files:

- the EM-text file
- the procedure table file



-16-

- the object table file
- the CFG and loop tables file

Every table is preceded by its length, in order to tell where it ends.
The CFG file also contains the number of instructions of every basic
block, indicating which part of the EM text belongs to that block.

syntax

intermediate_code:
object_table_file
proctable_file
em_text_file
cfg_file ;
object_table_file:
LENGTH -- number of objects
object_table ;
proctable_file:
LENGTH -- number of procedures
procedure_table ;
em_text_file:

em_text ;
cfg_file:
{per_proc} ; -- one for every procedure
per_proc:
BLENGTH -- number of basic blocks
LLENGTH -- number of loops
control_flow_graph
looptable ;

3.5. The Intermediate Code construction phase

The first phase of the global optimizer, called IC, constructs a
major part of the intermediate code. To be specific, it produces:

- the EM text
- the object table

- part of the procedure table

The calling, change and use attributes of a procedure and all its flags
except the external and bodyseen flags are computed by the next phase
(Control Flow phase).

As explained before, the intermediate code does not contain any
names of variables or procedures. The normal identifiers are replaced
by identifying numbers. Yet, the output of the global optimizer must
contain normal identifiers, as this output is in Compact Assembly Lan-

guage format. We certainly want all externally visible names to be
the same in the input as in the output, because the optimized EM mod-
ule may be a library unit, used by other modules. IC dumps the names

of all procedures and data labels on two files:
- the procedure dump file, containing tuples (P_ID, procedure name)
- the data dump file, containing tuples (D_ID, data label name)

The names of instruction labels are not dumped, as they are not visi-
ble outside the procedure in which they are defined.



-17-

The input to IC consists of one or more files. Each file is either
an EM module in Compact Assembly Language format, or a Unix archive
file (library) containing such modules. IC only extracts those modules
from a library that are needed somehow, just as a linker does. It is
advisable to present as much code of the EM program as possible to the
optimizer, although it is not required to present the whole program.
If a procedure is called somewhere in the EM text, but its body (text)
is not included in the input, its bodyseen flag in the procedure table
will still be off. Whenever such a procedure is called, we assume the
worst case for everything; it will change and use all variables it has
access to, it will call every procedure etc.

Similarly, if a data label 1is wused but not defined, the PSEUDO
attribute in its data block will be set to UNKNOWN.

3.5.1. Implementation

Part of the code for the EM Peephole Optimizer [b] has been used
for IC. Especially the routines that read and unravel Compact Assem-
bly Language and the identifier lookup mechanism have been used. New
code was added to recognize objects, build the object and procedure
tables and to output the intermediate code.

IC uses singly linked linear lists for both the procedure and

object table. Hence there are no limits on the size of such a table
(except for the trivial fact that it must fit in main memory). Both
tables are outputted after all EM code has been processed. IC reads

the EM text of one entire procedure at a time, processes it and
appends the modified code to the BEM text file. EM code is represented
internally as a doubly linked linear list of EM instructions.

Objects are recognized by looking at the operands of instructions

that reference global data. If we come across the instructions:
LDE X+6 -- Load Double External
LAE X+20 -- Load Address External

we conclude that the data block preceded by the data label X contains
an object at offset 6 of size twice the word size, and an object at
offset 20 of unknown size.

A data block entry of the object table is allocated at the first refer-
ence to a data label. If this reference is a defining occurrence or a
INA pseudo instruction, the label is not externally visible [Tane83a,
section 11.1.4.3] In this case, the external flag of the data block is

turned off. If the first reference is an applied occurrence or a EXA
pseudo instruction, the flag is set. We record this information,
because the optimizer may change the order of defining and applied
occurrences. The INA and EXA pseudos are removed from the EM text.

They may be regenerated by the last phase of the optimizer.

Similar rules hold for the procedure table and the INP and EXP pseu-
dos.



-18-

3.5.2. Source files of IC

The source files of IC consist of the files ic.c, ic.h and several
packages. ic.h contains type definitions, macros and variable declara-
tions that may be used by ic.c and by every package. ic.c contains
the definitions of these variables, the procedure main and some high
level I/O routines used by main.

Every package xxx consists of two files. 1ic_xxx.h contains type defini-
tions, macros, variable declarations and procedure declarations that
may be used by every .c file that includes this .h file. The file
ic_xxx.c provides the definitions of these variables and the implemen-
tation of the declared procedures. IC uses the following packages:

lookup: procedures that loop up procedure, data label and
instruction label names; procedures to dump the proce-
dure and data label names.

lib: one procedure that gets the next useful input module;
while scanning archives, it skips unnecessary modules.

aux: several auxiliary routines.

io: low-level I/0 routines that unravel the Compact Assembly
Language.

put: routines that output the intermediate code



-19-

4. The Control Flow Phase

In the previous chapter we described the intermediate code of the
global optimizer. We also specified which part of this code was con-
structed by the IC phase of the optimizer. The Control Flow Phase
(CF) does the remainder of the job, i.e. it determines:

- the control flow graphs
- the loop tables

- the calling, change and use attributes of the procedure table

entries
CF operates on one procedure at a time. For every procedure it first
reads the BEM instructions from the BEM-text file and groups them into
basic blocks. For every basic block, its successors and predecessors
are determined, resulting in the control flow graph. Next, the immedi-
ate dominator of every basic block is computed. Using these domina-

tors, any loop in the procedure is detected. Finally, interprocedural
analysis is done, after which we will know the global effects of every
procedure call on its environment.

CF uses the same internal data structures for the procedure table and
object table as IC.

4.1. Partitioning into basic blocks

With regard to flow of control, we distinguish three kinds of EM
instructions: jump instructions, instruction label definitions and nor-
mal instructions. Jump instructions are all conditional or uncondi-
tional branch instructions, the case instructions (CSA/CSB) and the
RET (return) instruction. A procedure call (CAL) is not considered to
be a jump. A defining occurrence of an instruction label is regarded
as an EM instruction.

An instruction starts a new basic block, in any of the following
cases:

1. It is the first instruction of a procedure
2. It is the first of a list of instruction label defining occurrences
3. It follows a jump

If there are several consecutive instruction labels (which is highly
unusual), all of them are put in the same basic block. Note that sev-
eral cases may overlap, e.g. a label definition at the beginning of a
procedure or a label following a jump.

A simple Finite State Machine is used to model the above rules.
It also recognizes the end of a procedure, marked by an END pseudo.
The basic blocks are stored internally as a doubly linked linear list.

The blocks are linked in textual order. Every node of this list has
the attributes described in the previous chapter (see syntax rule for
basic_block). Furthermore, every node contains a pointer to its EM
instructions, which are represented internally as a linear, doubly
linked 1list, just as in the IC phase. However, instead of one list

per procedure (as in IC) there is now one list per basic block.

On the fly, a table is build that maps every label identifier to the
label definition instruction. This table is used for computing the
control flow. The table is stored as a dynamically allocated array.
The length of the array 1is the number of labels of the current



-20-

procedure; this value can be found in the procedure table, where it
was stored by IC.

4.2. Control Flow

A successor of a basic block B is a block C that can be executed
immediately after B. C is said to be a predecessor of B. A block ending
with a RET instruction has no successors. Such a block is called a
return block. Any block that has no predecessors cannot be executed at
all (i.e. it is unreachable), unless it is the first block of a proce-
dure, called the procedure entry block.

Internally, the successor and predecessor attributes of a basic
block are stored as sets. Alternatively, one may regard all these sets
of all basic blocks as a conceptual graph, in which there is an edge
from B to C if C is in the successor set of B. We call this concep-
tual graph the Control Flow Graph .

The only successor of a basic block ending on an unconditional
branch instruction is the block that contains the label definition of

the target of the jump. The target instruction can be found via the
LAB_ID that is the operand of the jump instruction, by wusing the
label-map table mentioned above. If the last instruction of a block
is a conditional jump, the successors are the target block and the
textually next block. The last instruction can also be a case jump
instruction (CSA or CSB). We then analyze the case descriptor, to find
all possible target instructions and their associated blocks. We

require the case descriptor to be allocated in a ROM, so it cannot be
changed dynamically. A case jump via an alterable descriptor could in
principle go to any label in the program. In the presence of such an
uncontrolled jump, hardly any optimization can be done. We do not
expect any front end to generate such a descriptor, however, because
of the controlled nature of case statements in high level languages.
If the basic block does not end in a jump instruction, its only suc-
cessor is the textually next block.

4.3. Immediate dominators

A basic block B dominates a block C if every path in the control
flow graph from the procedure entry block to C goes through B. The
immediate dominator of C is the closest dominator of C on any path
from the entry block. See also [Aho78a, section 13.1.]

There are a number of algorithms to compute the immediate domina-
tor relation.

1. Purdom and Moore give an algorithm that is easy to program and
easy to describe (although the description they give is unread-
able; it is given in a very messy Algol60 program full of gotos).
[Purd72a]

2. Aho and Ullman present a bitvector algorithm, which is also easy
to program and to understand. (See [Aho78a, section 13.1.]).

3 Lengauer and Tarjan introduce a fast algorithm that is hard to
understand, yet remarkably easy to implement. [Leng79a]

The Purdom-Moore algorithm is very slow if the number of basic blocks
in the flow graph is large. The Aho-Ullman algorithm in fact computes
the dominator relation, from which the immediate dominator relation
can be computed in time quadratic to the number of basic blocks, worst



-21-

case. The storage requirement 1is also quadratic to the number of
blocks. The running time of the third algorithm is proportional to:

(number of edges in the graph) * log(number of blocks).

We have chosen this algorithm because it is fast (as shown by experi-
ments done by Lengauer and Tarjan), it is easy to program and requires
little data space.

4.4. Loop detection

Loops are detected by wusing the loop construction algorithm
of. [Aho78a, section 13.1.] This algorithm uses backedges. A back edge
is an edge from B to C in the CFG, whose head (C) dominates its tail
(B). The loop associated with this back edge consists of C plus all
nodes in the CFG that can reach B without going through C.

As an example of how the algorithm works, consider the piece of
program of Fig. 4.1. First just look at the program and try to see
what part of the code constitutes the loop.

loop
if cond then 1
-- lots of simple
-- assignment
-- statements 2 3
exit; -- exit loop
else
S; -- one statement
end if;
end loop;

Fig. 4.1 A misleading loop

Although a human being may be easily deceived by the brackets "loop"

and "end loop", the loop detection algorithm will correctly reply that
only the test for "cond" and the single statement in the false-part of
the if statement are part of the loop! The statements in the true-

part only get executed once, so there really is no reason at all to
say they’re part of the loop too. The CFG contains one back edge,
"3->1". As node 3 cannot be reached from node 2, the latter node 1is
not part of the loop.

A source of problems with the algorithm is the fact that different
back edges may result in the same loop. Such an ill-structured loop
is called a messy loop. After a loop has been constructed, it 1is
checked if it is really a new loop.

Loops can partly overlap, without one being nested inside the
other. This is the case in the program of Fig. 4.2.



-22-

S1;

S2; 2
if cond then
goto 4;
S3; 3 4
goto 1;

S4;
goto 1;

Fig. 4.2 Partly overlapping loops

There are two back edges "3->1" and "4->1", resulting in the loops
{1,2,3} and {1,2,4}. With every basic block we associate a set of all
loops it is part of. It is not sufficient just to record its most

enclosing loop.

After all loops of a procedure are detected, we determine the
nesting level of every loop. Finally, we find all strong and firm
blocks of the loop. If the loop has only one back edge (i.e. it is
not messy), the set of firm blocks consists of the head of this back
edge and its dominators in the loop (including the loop entry block).
A firm block is also strong if it is not a successor of a block that
may exit the loop; a block may exit a loop if it has an (immediate)
successor that is not part of the loop. For messy loops we do not
determine the strong and firm blocks. These loops are expected to occur
very rarely.

4.5. Interprocedural analysis

It is often desirable to know the effects a procedure call may
have. The optimization below is only possible if we know for sure
that the call to P cannot change A.

A = 10; A:= 10;
P; -- procedure call --> P;
B := A+ 2; B :=12;

Although it is not possible to predict exactly all the effects a pro-
cedure call has, we may determine a kind of upper bound for it. So we
compute all variables that may be changed by P, although they need not
be changed at every invocation of P. We can get hold of this set by
just looking at all assignment (store) instructions in the body of P.
EM also has a set of indirect assignment instructions, i.e. assignment
through a pointer variable. In general, it is not possible to deter-
mine which variable is affected by such an assignment. In these
cases, we just record the fact that P does an indirect assignment.
Note that this does not mean that all variables are potentially
affected, as the front ends may generate messages telling that certain
variables can never be accessed indirectly. We also set a flag if P

does a use (load) indirect. Note that we only have to look at global
variables. If P changes or uses any of its locals, this has no effect
on its environment. Local variables of a lexically enclosing proce-

dure can only be accessed indirectly.



-23-

A procedure P may of course call another procedure. To determine
the effects of a call to P, we also must know the effects of a call to
the second procedure. This second one may call a third one, and so
on. Effectively, we need to compute the transitive closure of the effects.
To do this, we determine for every procedure which other procedures it
calls. This set is the "calling" attribute of a procedure. One may
regard all these sets as a conceptual graph, in which there is an edge
from P to Q if Q is in the calling set of P. This graph will be
referred to as the call graph. (Note the resemblance with the control
flow graph).

We can detect which procedures are called by P by looking at all
CAL instructions in its body. Unfortunately, a procedure may also be
called indirectly, via a CAI instruction. Yet, only procedures that
are used as operand of an LPI instruction can be called indirect,
because this is the only way to take the address of a procedure. We
determine for every procedure whether it does a CAI instruction. We
also build a set of all procedures used as operand of an LPI.

After all procedures have been processed (i.e. all CFGs are con-
structed, all loops are detected, all procedures are analyzed to see
which variables they may change, which procedures they call, whether
they do a CAI or are used in an LPI) the transitive closure of all
interprocedural information is computed. During the same process, the
calling set of every procedure that uses a CAI is extended with the
above mentioned set of all procedures that can be called indirect.

4.6. Source files

The sources of CF are in the following files and packages:

cf.h: declarations of global variables and data structures

cf.c: the routine main; interprocedural analysis; transitive clo-
sure

succ: control flow (successor and predecessor)

idom: immediate dominators

loop: loop detection

get: read object and procedure table; read EM text and partition

it into basic blocks
put: write tables, CFGs and EM text



_24-

5. Inline substitution

5.1. Introduction

The Inline Substitution technique (IL) tries to decrease the over-
head associated with procedure calls (invocations). During a proce-
dure call, several actions must be undertaken to set up the right
environment for the called procedure. [John8la] On return from the
procedure, most of these effects must be undone. This entire process
introduces significant costs in execution time as well as in object
code size.

The inline substitution technique replaces some of the calls by
the modified body of the called procedure, hence eliminating the over-
head. Furthermore, as the calling and called procedure are now inte-
grated, they can be optimized together, using other techniques of the
optimizer. This often leads to extra opportunities for optimization
[Ball79a, Cart77a, Sche77a]

An inline substitution of a call to a procedure P increases the
size of the program, unless P is very small or P is called only once.
In the latter case, P can be eliminated. In practice, procedures that
are called only once occur quite frequently, due to the introduction
of structured progranmming. (Carter [Cart82a] states that almost 50%
of the Pascal procedures he analyzed were called just once).

Scheifler [Sche77a] has a more general view of inline substitution.
In his model, the program under consideration is allowed to grow by a
certain amount, i.e. code size is sacrificed to speed up the program.
The above two cases are just special cases of his model, obtained by
setting the size-change to (approximately) zero. He formulates the
substitution problem as follows:

"Given a program, a subset of all invocations, a maximum program
size, and a maximum procedure size, find a sequence of substitu-
tions that minimizes the expected execution time."

Scheifler shows that this problem is NP-complete [Aho74a, chapter 10]
by reduction to the Knapsack Problem. Heuristics will have to be used
to find a near-optimal solution.

In the following chapters we will extend Scheifler’s view and adapt
it to the EM Global Optimizer. We will first describe the transforma-
tions that have to be applied to the EM text when a call is substi-

tuted in line. Next we will examine in which cases inline substitu-
tion is not possible or desirable. Heuristics will be developed for
chosing a good sequence of substitutions. These heuristics make no

demand on the user (such as making profiles [Sche77a] or giving prag-
mats [Ichb83a, section 6.3.2]), although the model could easily be
extended to use such information. Finally, we will discuss the imple-
mentation of the IL phase of the optimizer.

We will often use the term inline expansion as a synonym of inline
substitution.
The inverse technique of procedure abstraction (automatic subroutine
generation) [Shaf78a] will not be discussed in this report.

5.2. Parameters and local variables.

In the BEM calling sequence, the calling procedure pushes its
parameters on the stack before doing the CAL. The called routine first



-25-

saves some status information on the stack and then allocates space

for its own locals (also on the stack). Usually, one special purpose
register, the Local Base (LB) register, is used to access both the
locals and the parameters. If memory is highly segmented, the stack

frames of the caller and the callee may be allocated in different
fragments; an extra Argument Base (AB) register is used in this case
to access the actual parameters. See 4.2 of [Tane83a] for further
details.

If a procedure call is expanded in line, there are two problems:

No stack frame will be allocated for the called procedure; we must
find another place to put its locals.

The LB register cannot be used to access the actual parameters; as
the CAL instruction is deleted, the LB will still point to the local
base of the calling procedure.

The local variables of the called procedure will be put in the stack
frame of the calling procedure, just after its own locals. The size
of the stack frame of the calling procedure will be increased during
its entire lifetime. Therefore our model will allow a limit to be set
on the number of bytes for locals that the called procedure may have
(see next section).

There are several alternatives to access the parameters. An
actual parameter may be any auxiliary expression, which we will refer
to as the actual parameter expression. The value of this expression is stored

in a location on the stack (see above), the parameter location.
The alternatives for accessing parameters are:

- save the value of the stackpointer at the point of the CAL in a
temporary variable X; this variable can be used to simulate the AB
register, 1i.e. parameter locations are accessed via an offset to
the value of X.

- create a new temporary local variable T for the parameter (in the
stack frame of the caller); every access to the parameter location
must be changed into an access to T.

- do not evaluate the actual parameter expression before the call;
instead, substitute this expression for every use of the parameter
location.

The first method may be expensive if X is not put in a register. We

will not wuse this method. The time required to evaluate and access
the parameters when the second method is used will not differ much
from the normal calling sequence (i.e. not in line call). It is not
expensive, but there are no extra savings either. The third method is
essentially the ’by name’ parameter mechanism of Algol60. If the
actual parameter is just a numeric constant, it is advantageous to use
it. Yet, there are several circumstances under which it cannot or

should not be used. We will deal with this in the next section.

In general we will use the third method, if it is possible and desir-
able. Such parameters will be called in line parameters. In all other
cases we will use the second method.



-26-

5.3. Feasibility and desirability analysis

Feasibility and desirability analysis of in line substitution dif-

fer somewhat from most other techniques. Usually, much effort is
needed to find a feasible opportunity for optimization (e.g. a redun-
dant subexpression). Desirability analysis then checks if it s

really advantageous to do the optimization. For IL, opportunities are
easy to find. To see if an in line expansion is desirable will not be
hard either. Yet, the main problem is to find the most desirable ones.
We will deal with this problem later and we will first attend feasibil-
ity and desirability analysis.

There are several reasons why a procedure invocation cannot or
should not be expanded in line.

A call to a procedure P cannot be expanded in line in any of the fol-
lowing cases:

1.
The body of P is not available as EM text. Clearly, there is no way
to do the substitution.

2.
P, or any procedure called by P (transitively), follows the chain of
statically enclosing procedures (via a LXL or LXA instruction) or
follows the chain of dynamically enclosing procedures (via a DCH).
If the call were expanded in line, one level would be removed from
the chains, leading to total chaos. This chaos could be solved by
patching up every LXL, LXA or DCH in all procedures that could be
part of the chains, but this is hard to implement.

3.
P, or any procedure called by P (transitively), calls a procedure
whose body is not available as BEM text. The unknown procedure may
use an LXL, LXA or DCH. However, in several languages a separately
compiled procedure has no access to the static or dynamic chain. In
this case this point does not apply.

4.
P, or any procedure called by P (transitively), wuses the LPB
instruction, which converts a local base to an argument base; as the
locals and parameters are stored in a non-standard way (differing
from the normal EM calling sequence) this instruction would yield
incorrect results.

5.

The total number of bytes of the parameters of P is not known. P
may be a procedure with a variable number of parameters or may have
an array of dynamic size as value parameter.

It is undesirable to expand a call to a procedure P in line in any of
the following cases:

1.
P is large, i.e. the number of EM instructions of P exceeds some
threshold. The expanded code would be large too. Furthermore, sev-
eral programs in ACK, including the global optimizer itself, may run
out of memory if they they have to run in a small address space and
are provided very large procedures. The threshold may be set to
infinite, in which case this point does not apply.



-27 -

P has many local variables. All these variables would have to be
allocated in the stack frame of the calling procedure.

If a call may be expanded in line, we have to decide how to access
its parameters. In the previous section we stated that we would use
in line parameters whenever possible and desirable. There are several
reasons why a parameter cannot or should not be expanded in line.

No parameter of a procedure P can be expanded in line, in any of the
following cases:

1.
P, or any procedure called by P (transitively), does a store-indi-
rect or a use-indirect (i.e. through a pointer). However, if the
front-end has generated messages telling that certain parameters can
not be accessed indirectly, those parameters may be expanded in
line.

2.
P, or any procedure called by P (transitively), calls a procedure
whose body is not available as BEM text. The unknown procedure may
do a store-indirect or a use-indirect. However, the same remark
about front-end messages as for 1. holds here.

3.
The address of a parameter location is taken (via a LAL). In the
normal calling sequence, all parameters are stored sequentially. If
the address of one parameter location is taken, the address of any
other parameter location can be computed from it. Hence we must put
every parameter in a temporary location; furthermore, all these
locations must be in the same order as for the normal calling
sequence.

4.

P has overlapping parameters; for example, it uses the parameter at
offset 10 both as a 2 byte and as a 4 byte parameter. Such code may
be produced by the front ends if the formal parameter is of some
record type with variants.

Sometimes a specific parameter must not be expanded in line.
An actual parameter expression cannot be expanded in line in any of
the following cases:

1.
P stores into the parameter location. Even if the actual parameter
expression is a simple variable, it is incorrect to change the
’store into formal’ into a ’store into actual’, because of the
parameter mechanism used. In Pascal, the following expansion 1is
incorrect:

procedure p (x:integer);

begin
X := 20;
end;
a = 10; a := 10;
p(a); ---> a := 20;

write(a); write(a);



-28-

2.
P changes any of the operands of the actual parameter expression.
If the expression is expanded and evaluated after the operand has
been changed, the wrong value will be used.

3.

The actual parameter expression has side effects. It must be evalu-
ated only once, at the place of the call.

It is undesirable to expand an actual parameter in line in the follow-
ing case:
1.
The parameter is used more than once (dynamically) and the actual
parameter expression is not just a simple variable or constant.

5.4. Heuristic rules

Using the information described in the previous section, we can
find all calls that can be expanded in line, and for which this expan-
sion is desirable. In general, we cannot expand all these calls, so
we have to choose the ’'best’ ones. With every CAL instruction that
may be expanded, we associate a payoff, which expresses how desirable it
is to expand this specific CAL.

Let Tc denote the portion of EM text involved in a specific call, i.e.
the pushing of the actual parameter expressions, the CAL itself, the
popping of the parameters and the pushing of the result (if any, via
an LFR). Let Te denote the EM text that would be obtained by expand-
ing the call in line. Let Pc be the original program and Pe the pro-
gram with Te substituted for Tc. The pay off of the CAL depends on
two factors:

- T = execution_time(Pe) - execution_time(Pc)
- S = code_size(Pe) - code_size(Pc)

The change in execution time (T) depends on:

- Tl = execution_time(Te) - execution_time(Tc)
- N = number of times Te or Tc get executed.

We assume that Tl will be the same every time the code gets executed.

This is a reasonable assumption. (Note that we are talking about one
CAL, not about different calls to the same procedure). Hence
T=N*Tl

Tl can be estimated by a careful analysis of the transformations that
are performed. Below, we list everything that will be different when
a call is expanded in line:

- The CAL instruction 1is not executed. This saves a subroutine
jump .

- The instructions in the procedure prolog are not executed. These
instructions, generated from the PRO pseudo, save some machine
registers (including the old LB), set the new LB and allocate
space for the locals of the called routine. The savings may be
less if there are no locals to allocate.

- In line parameters are not evaluated before the call and are not
pushed on the stack.



-29.

- All remaining parameters are stored in local variables, instead of
being pushed on the stack.

- If the number of parameters is nonzero, the ASP instruction after
the CAL is not executed.

- Every reference to an in line parameter is substituted by the
parameter expression.

- RET (return) instructions are replaced by BRA (branch) instruc-
tions. If the called procedure ’falls through’ (i.e. it has only
one RET, at the end of its code), even the BRA is not needed.

- The LFR (fetch function result) is not executed

Besides these changes, which are caused directly by IL, other
changes may occur as IL influences other optimization techniques, such
as Register Allocation and Constant Propagation. Our heuristic rules
do not take into account the quite inpredictable effects on Register
Allocation. It does, however, favour calls that have numeric constants
as parameter; especially the constant "O" as an inline parameter gets
high scores, as further optimizations may often be possible.

It cannot be determined statically how often a CAL instruction
gets executed. We will use loop nesting information here. The nesting
level of the loop in which the CAL appears (if any) will be used as an
indication for the number of times it gets executed.

Based on all these facts, the pay off of a call will be computed.
The following model was developed empirically. Assume procedure P
calls procedure Q. The call takes place in basic block B.

P = # zero parameters

CP = # constant parameters - ZP

LN = Loop Nesting level (0 if outside any loop)
F = if # formal parameters of Q > 0 then 1 else 0
FT = if Q falls through then 1 else 0

S = size(Q) - 1 - # inline_parameters - F

L = if # local variables of P > 0 then 0 else -1
A = CP + 2 * ZP

N = if LN=0 and P is never called from a loop then 0 else (LN+1)**2
MM = if B is a firm block then 2 else 1

pay_off = (100/S + FT + F+ L + A) * N * M

S stands for the size increase of the program, which is slightly less
than the size of Q. The size of a procedure is taken to be its number
of (non-pseudo) EM instructions. The terms "loop nesting level" and
"firm" were defined in the chapter on the Intermediate Code (section
"loop tables"). If a call is not inside a loop and the calling proce-
dure is itself never called from a loop (transitively), then the call
will probably be executed at most once. Such a call is never expanded
in line (its pay off is zero). If the calling procedure doesn’t have
local variables, a penalty (L) is introduced, as it will most likely
get local variables if the call gets expanded.

5.5. Implementation

A major factor in the implementation of Inline Substitution is the
requirement not to use an excessive amount of memory. IL essentially



-30-

analyzes the entire program; it makes decisions based on which proce-
dure calls appear in the whole program. Yet, because of the memory
restriction, it 1is not feasible to read the entire program in main
memory. To solve this problem, the IL phase has been split up into
three subphases that are executed sequentially:

1. analyze every procedure; see how it accesses 1its parameters;
simul taneously collect all calls appearing in the whole program an
put them in a call-list.

2. use the call-list and decide which calls will be substituted in
line.

3. take the decisions of subphase 2 and modify the program accord-
ingly.

Subphases 1 and 3 scan the input program; only subphase 3 modifies it.
It is essential that the decisions can be made in subphase 2 without
using the input program, provided that subphase 1 puts enough informa-
tion in the call-list. Subphase 2 keeps the entire call-list in main
memory and repeatedly scans it, to find the next best candidate for
expansion.

We will specify the data structures used by IL before describing
the subphases.

5.5.1. Data structures

5.5.1.1. The procedure table

In subphase 1 information is gathered about every procedure and
added to the procedure table. This information is used by the heuris-
tic rules. A proctable entry for procedure p has the following extra
information:

- is it allowed to substitute an invocation of p in line?

- is it allowed to put any parameter of such a call in line?
- the size of p (number of EM instructions)

- does p 'fall through’?

- a description of the formal parameters that p accesses; this
information is obtained by looking at the code of p. For every
parameter f, we record:

- the offset of f
- the type of f (word, double word, pointer)
- may the corresponding actual parameter be put in line?
- is f ever accessed indirectly?
- if f used: never, once or more than once?
- the number of times p is called (see below)

- the file address of its call-count information (see below).

5.5.1.2. Call-count information

As a result of Inline Substitution, some procedures may become
useless, because all their invocations have been substituted in line.
One of the tasks of IL is to keep track which procedures are no longer
called. Note that IL is especially keen on procedures that are called



-31-

only once (possibly as a result of expanding all other calls to it).
So we want to know how many times a procedure is called during Inline
Substitution. It is not good enough to compute this information
afterwards. The task is rather complex, because the number of times a
procedure is called varies during the entire process:

1. If a call to p is substituted in line, the number of calls to p
gets decremented by 1.

2. If a call to p is substituted in line, and p contains n calls to
q, then the number of calls to q gets incremented by n.

3. If a procedure p is removed (because it is no longer called) and p
contains n calls to q, then the number of calls to q gets decre-
mented by n.

(Note that p may be the same as q, if p is recursive).
So we actually want to have the following information:

NRCALL(p,q) = number of call to q appearing in p,

for all procedures p and q that may be put in line.

This information, called call-count information is computed by the first sub-
phase. It is stored in a file. It is represented as a number of
lists, rather than as a (very sparse) matrix. Every procedure has a
list of (proc,count) pairs, telling which procedures it calls, and how
many times. The file address of its call-count list is stored in its
proctable entry. Whenever this information is needed, it is fetched
from the file, using direct access. The proctable entry also contains
the number of times a procedure is called, at any moment.

5.5.1.3. The call-list

The call-list is the major data structure use by IL. Every item
of the 1list describes one procedure call. It contains the following
attributes:

- the calling procedure (caller)
- the called procedure (callee)
- identification of the CAL instruction (sequence number)

- the loop nesting level; our heuristic rules appreciate calls
inside a loop (or even inside a loop nested inside another loop,
etc.) more than other calls

- the actual parameter expressions involved in the call; for every
actual, we record:

- the EM code of the expression
- the number of bytes of its result (size)
- an indication if the actual may be put in line

The structure of the call-list is rather complex. Whenever a call is
expanded in line, new calls will suddenly appear in the program, that
were not contained in the original body of the calling subroutine.
These calls are inherited from the called procedure. We will refer to
these invocations as nestedcalls (see Fig. 5.1).



-32-

procedure p is

begin
a();
b();
end;
procedure r is procedure r is
begin begin
x(); x();
p(): ~-- in line a(); -- nested call
y(O); b(); -- nested call

end; y(O);
end;

Fig. 5.1 Example of nested procedure calls

Nested calls may subsequently be put in line too (probably resulting

in a yet deeper nesting level, etc.). So the call-list does not
always reflect the source program, but changes dynamically, as deci-
sions are made. If a call to p is expanded, all calls appearing in p

will be added to the call-list.

A convenient and elegant way to represent the call-list is to use a
LISP-like list. [Poel72a] Calls that appear at the same level are
linked in the CDR direction. If a call C to a procedure p is expanded,
all calls appearing in p are put in a sub-list of C, i.e. in its CAR.
In the example above, before the decision to expand the call to p is
made, the call-list of procedure r looks like:

(call-to-x, call-to-p, call-to-y)
After the decision, it looks like:
(call-to-x, (call-to-p*, call-to-a, call-to-b), call-to-y)

The call to p is marked, because it has been substituted. Whenever IL
wants to traverse the call-list of some procedure, it uses the well-
known LISP technique of recursion in the CAR direction and iteration
in the CDR direction (see page 1.19-2 of [Poel72a] ). All list
traversals look like:

traverse(list)

{
for (¢ = first(list); ¢ != 0; ¢ = CDR(c)) {
if (c is marked) {
traverse (CAR(c));
} else {
do something with c
}
}
}
The entire call-list consists of a number of LISP-like lists, one for
every procedure. The proctable entry of a procedure contains a

pointer to the beginning of the list.



-33-

5.5.2. The first subphase: procedure analysis

The tasks of the first subphase are to determine several attributes
of every procedure and to construct the basic call-list, i.e. without
nested calls. The size of a procedure is determined by simply count-
ing its EM instructions. Pseudo instructions are skipped. A proce-
dure does not ’fall through’ if its CFG contains a basic block that is
not the last block of the CFG and that ends on a RET instruction. The
formal parameters of a procedure are determined by inspection of its
code.

The call-list in constructed by looking at all CAL instructions
appearing in the program. The call-list should only contain calls to
procedures that may be put in line. This fact is only known if the
procedure was analyzed earlier. If a call to a procedure p appears in
the program before the body of p, the call will always be put in the
call-list. If p is later found to be unsuitable, the call will be
removed from the list by the second subphase.

An important issue is the recognition of the actual parameter

expressions of the call. The front ends produces messages telling how
many bytes of formal parameters every procedure accesses. (If there
is no such message for a procedure, it cannot be put in line). The

actual parameters together must account for the same number of bytes.A
recursive descent parser is used to parse side-effect free EM expres-
sions. It uses a table and some auxiliary routines to determine how
many bytes every EM instruction pops from the stack and how many bytes
it pushes onto the stack. These numbers depend on the EM instruction,
its argument, and the wordsize and pointersize of the target machine.
Initially, the parser has to recognize the number of bytes specified in
the formals-message, say N. Assume the first instruction before the
CAL pops S bytes and pushes R bytes. If R > N, too many bytes are
recognized and the parser fails. Else, it calls itself recursively to
recognize the S bytes used as operand of the instruction. If it suc-
ceeds in doing so, it continues with the next instruction, i.e. the
first instruction before the code recognized by the recursive call, to
recognize N-R more bytes. The result is a number of EM instructions
that collectively push N bytes. If an instruction is come across that
has side-effects (e.g. a store or a procedure call) or of which R and
S cannot be computed statically (e.g. a LOS), it fails.

Note that the parser traverses the code backwards. As EM code is
essentially postfix code, the parser works top down.

If the parser fails to recognize the parameters, the call will not
be substituted in line. If the parameters can be determined, they
still have to match the formal parameters of the called procedure.
This check is performed by the second subphase; it cannot be done
here, because it is possible that the called procedure has not been
analyzed yet.

The entire call-list is written to a file, to be processed by the
second subphase.

5.5.3. The second subphase: making decisions

The task of the second subphase is quite easy to understand. It
reads the call-list file, builds an incore call-list and deletes every
call that may not be expanded in line (either because the called pro-
cedure may not be put in line, or because the actual parameters of the



-34-

call do not match the formal parameters of the called procedure). It
assigns a pay-off to every call, indicating how desirable it is to expand
1t.

The subphase repeatedly scans the call-list and takes the call

with the highest ratio. The chosen one gets marked, and the call-list
is extended with the nested calls, as described above. These nested
calls are also assigned a ratio, and will be considered too during the
next scans.
After every decision the number of times every procedure is called is
updated, using the call-count information. Meanwhile, the subphase
keeps track of the amount of space left available. If all space is
used, or if there are no more calls left to be expanded, it exits this
loop. Finally, calls to procedures that are called only once are also
chosen.

The actual parameters of a call are only needed by this subphase

to assign a ratio to a call. To save some space, these actuals are
not kept in main memory. They are removed after the call has been
read and a ratio has been assigned to it. So this subphase works with

abstracts of calls. After all work has been done, the actual parameters
of the chosen calls are retrieved from a file, as they are needed by
the transformation subphase.

5.5.4. The third subphase: doing transformations

The third subphase makes the actual modifications to the EM text.
It is directed by the decisions made in the previous subphase, as
expressed via the call-list. The call-list read by this subphase con-
tains only calls that were selected for expansion. The list is
ordered in the same way as the EM text, i.e. if a call Cl appears
before a call C2 in the call-list, Cl also appears before C2 in the EM
text. So the EM text is traversed linearly, the calls that have to be
substituted are determined and the modifications are made. If a proce-
dure is come across that is no longer needed, it is simply not written
to the output EM file. The substitution of a call takes place in dis-
tinct steps:

change the calling sequence
The actual parameter expressions are changed. Parameters that
are put in line are removed. All remaining ones must store their
result in a temporary local variable, rather than push it on the
stack. The CAL instruction and any ASP (to pop actual parame-
ters) or LFR (to fetch the result of a function) are deleted.

fetch the text of the called procedure
Direct disk access is used to to read the text of the called
procedure. The file offset is obtained from the proctable entry.

allocate bytes for locals and temporaries
The local variables of the called procedure will be put in the

stack frame of the calling procedure. The same applies to any
temporary variables that hold the result of parameters that were
not put in line. The proctable entry of the caller is updated.

put a label after the CAL
If the called procedure contains a RET (return) instruction
somewhere in the middle of its text (i.e. it does not fall
through), the RET must be changed into a BRA (branch), to jump



-35-

over the remainder of the text. This label is not needed if the
called procedure falls through.

copy the text of the called procedure and modify it

References to local variables of the called routine and to param-
eters that are not put in line are changed to refer to the new
local of the caller. References to in line parameters are
replaced by the actual parameter expression. Returns (RETs) are
either deleted or replaced by a BRA. Messages containing infor-
mation about local variables or parameters are changed. Global
data declarations and the PRO and END pseudos are removed.
Instruction labels and references to them are changed to make
sure they do not have the same identifying number as labels in
the calling procedure.

insert the modified text
The pseudos of the called procedure are put after the pseudos of
the calling procedure. The real text of the callee is put at
the place where the CAL was.

take care of nested substitutions
The expanded procedure may contain calls that have to be expanded
too (nested calls). If the descriptor of this call contains
actual parameter expressions, the code of the expressions has to
be changed the same way as the code of the callee was changed.
Next, the entire process of finding CALs and doing the substitu-
tions is repeated recursively.

5.6. Source files of IL

The sources of IL are in the following files and packages (the pre-
fixes 1_, 2_ and 3_ refer to the three subphases):

il.h: declarations of global variables and data structures

il.c: the routine main; the driving routines of the three sub-
phases

1_anal: contains a subroutine that analyzes a procedure

1 _cal: contains a subroutine that analyzes a call

1_aux: implements auxiliary procedures used by subphase 1

2_aux: implements auxiliary procedures used by subphase 2

3_subst: the driving routine for doing the substitution

3_change: lower level routines that do certain modifications

3_aux: implements auxiliary procedures used by subphase 3

aux: implements auxiliary procedures used by several subphases.



-36-

6. Strength reduction

6.1. Introduction

The Strength Reduction optimization technique (SR) tries to
replace expensive operators by cheaper ones, in order to decrease the
execution time of the program. A classical example is replacing a

‘'multiplication by 2’ by an addition or a shift instruction. These
kinds of local transformations are already done by the EM Peephole
Optimizer. Strength reduction can also be applied more generally to

operators used in a loop.

i = 1; i :=1;
while i < 100 loop --> TMP := 1 * 118;
put(i * 118); while i < 100 loop
i =1+ 1; put (IMP) ;
end loop; i =1+ 1;
T™P := TMP + 118;
end loop;

Fig. 6.1 An example of Strenght Reduction

In Fig. 6.1, a multiplication inside a loop is replaced by an addition
inside the loop and a multiplication outside the loop. Clearly, this
is a global optimization; it cannot be done by a peephole optimizer.

In some cases a related technique, fest replacement, can be used to
eliminate the loop variable i. This technique will not be discussed
in this report.

In the example above, the resulting code can be further optimized by
using constant propagation. Obviously, this is not the task of the
Strength Reduction phase.

6.2. The model of strength reduction

In this section we will describe the transformations performed by
Strength Reduction (SR). Before doing so, we will introduce the cen-
tral notion of an induction variable.

6.2.1. Induction variables

SR looks for variables whose values form an arithmetic progression

at the beginning of a loop. These variables are called induction
variables. The most frequently occurring example of such a variable
is a loop-variable in a high-order programming language. Several

quite sophisticated models of strength reduction can be found in the
literature. [Cock77a, Alle8la, Lowr69a, Aho78a] In these models the
notion of an induction variable is far more general than the intuitive
notion of a loop-variable. The definition of an induction variable we
present here is more restricted, yielding a simpler model and simpler
transformations. We think the principle source for strength reduction
lies in expressions using a loop-variable, i.e. a variable that 1is
incremented or decremented by the same amount after every loop itera-
tion, and that cannot be changed in any other way.

Of course, the EM code does not contain high level constructs such
as for-statements. We will define an induction variable in terms of
the Intermediate Code of the optimizer. Note that the notions of a



-37-

loop in the EM text and of a firm basic block were defined in section
3.3.5.

definition

An induction variable i of a loop L is a local variable that is never
accessed indirectly, whose size 1is the word size of the target
machine, and that is assigned exactly once within L, the assignment:

- being of the form i := i + ¢ or i := ¢ +i, ¢ is a constant called
the step value of 1.

- occurring in a firm block of L.

(Note that the first restriction on the assignment is not described in
terms of the Intermediate Code; we will give such a description later;
the current definition is easier to understand however).

6.2.2. Recognized expressions

SR recognizes certain expressions using an induction variable and
replaces them by cheaper ones. Two kinds of expensive operations are
recognized: multiplication and array address computations. The
expressions that are simplified must use an induction variable as an
operand of a multiplication or as index in an array expression.

Often a linear function of an induction variable is used, rather
than the variable itself. In these cases optimization is still possi-
ble. We call such expressions iv-expressions.

definition:
An iv-expression of an induction variable i of a loop L is an expres-
sion that:

- uses only the operators + and - (unary as well as binary)

- uses i as operand exactly once

- uses (besides 1) only constants or variables that are never
changed in L as operands.
The expressions recognized by SR are of the following forms:

(1) iv_expression * constant

(2) constant * iv_expression

(3) A[iv-expression] := (assign to array element)
(4) Aliv-expression] (use array element)
(5) & A[iv-expression] (take address of array element)

(Note that EM has different instructions to use an array element,
store into one, or take the address of one, resp. LAR, SAR, and AAR).
The size of the elements of A must be known statically. In cases (3)
and (4) this size must equal the word size of the target machine.

6.2.3. Transformations

With every recognized expression we associate a new temporary
local variable TMP, allocated in the stack frame of the procedure con-
taining the expression. At any program point within the loop, TMP
will contain the following value:

multiplication:
the current value of iv-expression * constant



-38-

arrays: the current value of &A[iv-expression].

In the second case, TMP essentially is a pointer variable, pointing to
the element of A that is currently in use.

If the same expression occurs several times in the loop, the same tem-
porary local is used each time.

Three transformations are applied to the EM text:

(1) ™P 1is initialized with the right value. This initialization
takes place just before the loop.

(2) The recognized expression is simplified.

(3) T™P 1is incremented; this takes place just after the induction
variable is incremented.

For multiplication, the initial value of TMP is the value of the rec-
ognized expression at the program point immediately before the loop.
For arrays, TMP is initialized with the address of the first array ele-
ment that is accessed. So the initialization code is:

TMP := iv-expression * constant; or
TMP := &A[iv-expression]

At the point immediately before the loop, the induction variable will
already have been initialized, so the value used in the code above
will be the value it has during the first iteration.

For multiplication, the recognized expression can simply be
replaced by TMP. For array optimizations, the replacement depends on
the form:

form replacement

(3) Aliv-expr] := *IMP := (assign indirect)
(4) Aliv-expr] *TMP (use indirect)
(5) &Aliv-expr] T™P

The ’*’ denotes the indirect operator. (Note that EM has different
instructions to do an assign-indirect and a use-indirect). As the
size of the array elements is restricted to be the word size in case
(3) and (4), only one EM instruction needs to be generated in all
cases.

The amount by which TMP is incremented is:

multiplication:
step value * constant

arrays: step value * element size

Note that the step value (see definition of induction variable above),
the constant, and the element size (see previous section) can all be
determined statically. If the sign of the induction variable in the
iv-expression is negative, the amount must be negated.

The transformations are demonstrated by an example.



-390.-

i := 100; i := 100;
while i > 1 loop ™P := (6-i) * 5;

X = (6-1) * 5 + 2; while i > 1 loop

Y := (6-1) * 5 - 8; --> X = ITMP + 2;

i =1 - 3; Y := IMP - §;
end loop; i =1 - 3;

™P := TMP + 15;
end loop;

Fig. 6.2 Example of complex Strength Reduction transformations

The expression “(6-i1)*5" is recognized twice. The constant is 5. The

) )

step value is -3. The sign of i in the recognized expression is ’-
So the increment value of TMP is -(-3*%5) = +15.

6.3. Implementation

Like most phases, SR deals with one procedure at a time. Within a

procedure, SR works on one loop at a time. Loops are processed in
textual order. If loops are nested inside each other, SR starts with
the outermost loop and proceeds in the inwards direction. This order

is chosen, because it enables the optimization of multi-dimensional
array address computations, if the elements are accessed in the usual
way (i.e. row after row, rather than column after column). For every
loop, SR first detects all induction variables and then tries to recog-
nize expressions that can be optimized.

6.3.1. Finding induction variables

The process of finding induction variables can conveniently be
split up into two parts. First, the EM text of the loop is scanned to
find all candidate induction variables, which are word-sized local wvari-
ables that are assigned precisely once in the loop, within a firm
block. Second, for every candidate, the single assignment 1is
inspected, to see if it has the form required by the definition of an
induction variable.

Candidates are found by scanning the EM code of the loop. During
this scan, two sets are maintained. The set "cand" contains all vari-
ables that were assigned exactly once so far, within a firm block. The
set "dismiss" contains all variables that should not be made a candi-
date. Initially, both sets are empty. If a variable is assigned to,
it is put in the cand set, if three conditions are met:

1. the variable was not in cand or dismiss already
2. the assignment takes place in a firm block
3. the assignment is not a ZRL instruction (assignment by zero) or a

SDL instruction (store double local).

If any condition fails, the variable is dismissed from cand (if it was
there already) and put in dismiss (if it was not there already).

All variables for which no register message was generated (i.e. those
variables that may be accessed indirectly) are assumed to be changed
in the loop.

All variables that remain in cand are candidate induction variables.

From the set of candidates, the induction variables can be deter-
mined, by inspecting the single assignment. The assignment must match



-40-

one of the EM patterns below. (’x’ is the candidate. ’ws’ is the word
size of the target machine.

pattern step size
INL x | +1

DEL x | -1

LOL x ; (INC | DEC) ; STL x | +1 1 -1
LOL x ; LOC n ; (ADI ws | SBI ws) ; STL x | +n | -n
LOC n ; LOL x ; ADI ws ; STL x +n

From the patterns the step size of the induction variable can also be
determined. These step sizes are displayed on the right hand side.

For every induction variable we maintain the following information:
- the offset of the variable in the stackframe of its procedure

- a pointer to the EM text of the assignment statement

- the step value

6.3.2. Optimizing expressions

If any induction variables of the loop were found, the EM text of
the loop is scanned again, to detect expressions that can be opti-
mized. SR scans for multiplication and array instructions. Whenever
it finds such an instruction, it analyses the code in front of it. If

an expression is to be optimized, it must be generated by the follow-
ing syntax rules.

optimizable_expr:
iv_expr const mult |
const iv_expr mult |
address iv_expr address array_instr;

mult:
MLI ws |
MLU ws ;
array_instr:
LAR ws |
SAR ws |
AAR ws
const:
LOC n ;

An ’address’ is an EM instruction that loads an address on the stack.

An instruction like LOL may be an ’“address’, if the size of an address
(pointer size, =ps) is the same as the word size. If the pointer size
is twice the word size, instructions like LDL are an ’address’. (The

addresses in the third grammar rule denote resp. the array address and
the array descriptor address).



_41 -

address:

LAE |

LAL |

LOL if ps=ws |
LOE . |
LIL . |
IDL if ps=2*ws |
LDE . ;

The notion of an iv-expression was introduced earlier.

iv_expr:
iv_expr unair_op |
iv_expr iv_expr binary_op |
loopconst |
iv
unair_op:
NGI ws |
INC |
DEC ;
binary_op:
ADI ws |
ADU ws |
SBI ws |
SBU ws ;
loopconst:
const |
IOL x if x is not changed in loop ;
iv:
LOL x 1if x is an induction variable ;

An iv_expression must satisfy one additional constraint: it must use

exactly one operand that is an induction variable. A simple, hand
written, top-down parser is used to recognize an iv-expression. It
scans the EM code from right to left (recall that EM is essentially
pos tfix) . It uses semantic attributes (inherited as well as derived)

to check the additional constraint.

All information assembled during the recognition process is put in
a ’code_info’ structure. This structure contains the following infor-
mation:

- the optimizable code itself

- the loop and basic block the code is part of

- the induction variable

- the iv-expression

- the sign of the induction variable in the iv-expression

- the offset and size of the temporary local variable

the expensive operator (MLI, LAR etc.)

- the instruction that loads the constant (for multiplication) or
the array descriptor (for arrays).



_47-

The entire transformation process is driven by this information. As
the EM text is represented internally as a list, this process consists
mainly of straightforward list manipulations.

The initialization code must be put immediately before the loop entry.
For this purpose a header block is created that has the loop entry block
as its only successor and that dominates the entry block. The CFG and
all relations (SUCC,PRED, IDOM, LOOPS etc.) are updated.

An EM instruction that will replace the optimizable code is created
and put at the place of the old code. The list representing the old
optimizable code is used to create a list for the initializing code,
as they are similar. Only two modifications are required:

- if the expensive operator is a LAR or SAR, it must be replaced by
an AAR, as the initial value of TMP is the address of the first array
element that is accessed.

- code must be appended to store the result of the expression in

TMP.
Finally, code to increment TMP is created and put after the code of
the single assignment to the induction variable. The generated code

uses either an integer addition (ADI) or an integer-to-pointer addi-
tion (ADS) to do the increment.

SR maintains a set of all expressions that have already been rec-
ognized in the present loop. Such expressions are said to be available.
If an expression is recognized that is already available, no new tem-
porary local variable is allocated for it, and the code to initialize
and increment the local is not generated.

6.4. Source files of SR

The sources of SR are in the following files and packages:

sr.h: declarations of global variables and data structures

Sr.c: the routine main; a driving routine to process (possibly
nested) loops in the right order

iv implements a procedure that finds the induction variables of
a loop

reduce implements a procedure that finds optimizable expressions

and that does the transformations

cand implements a procedure that finds the candidate induction
variables; used to implement iv

xform implements several useful routines that transform lists of
EM text or a CFG; used to implement reduce

expr implements a procedure that parses iv-expressions

aux implements several auxiliary procedures.



_43-

7. Common subexpression elimination

7.1. Introduction

The Common Subexpression Elimination optimization technique (CS)
tries to eliminate multiple computations of EM expressions that yield

the same result. It places the result of one such computation in a
temporary variable, and replaces the other computations by a reference
to this temporary variable. The primary goal of this technique is to

decrease the execution time of the program, but in general it will
save space too.

As an example of the application of Common Subexpression Elimina-
tion, consider the piece of program in Fig. 7.1(a).

X := a * b; T™P := a * b; X := a * b;
CODE ; x = TMP; CODE
y = C + a * b, CODE y = X3

(a) (b) (¢)

Fig. 7.1 Examples of Common Subexpression Elimination

If neither a nor b is changed in CODE, the instructions can be
replaced by those of Fig. 7.1(b), which saves one multiplication, but
costs an extra store instruction. If the value of x is not changed in
CODE either, the instructions can be replaced by those of Fig. 7.1(c).
In this case the extra store is not needed.

In the following sections we will describe which transformations
are done by CS and how this phase was implemented.

7.2. Specification of the Common Subexpression Elimination phase

In this section we will describe the window through which CS exam-
ines the <code, the expressions recognized by CS, and finally the
changes made to the code.

7.2.1. The working window

The CS algorithm is applied to the largest sequence of textually
adjacent basic blocks Bl,..,Bn, for which

PRED(Bj) = {Bj-1}, j = 2,...,n.

Intuitively, this window consists of straight line code, with only one
entry point (at the beginning); it may contain jumps, which should all
have their targets outside the window. This is illustrated in Fig.
7.2.

X :=a * b; (1)
if x < 10 then (2)
y :=a * b; (3)

Fig. 7.2 The working window of CS

Line (2) can only be executed after line (1). Likewise, line (3) can
only be executed after line (2). Both a and b have the same values at
line (1) and at line (3).



_44 -

Larger windows were avoided. In Fig. 7.3, the value of a at line
(4) may have been obtained at more than one point.

X :=a * b; (1)

if x < 10 then (2)
:= 100; (3)

y = a * b; (4)

®
I

Fig. 7.3 Several working windows

7.2.2. Recognized expressions.

The computations eliminated by CS need not be normal expressions
(like "a * b"), but can even consist of a single operand that 1is
expensive to access, such as an array element or a record field. If an
array element is used, its address is computed implicitly. CS is able
to eliminate either the element itself or its address, whichever one
is most profitable. A variable of a textually enclosing procedure may
also be expensive to access, depending on the lexical level differ-
ence.

7.2.3. Transformations

CS creates a new temporary local variable (IMP) for every elimi-
nated expression, unless it is able to use an existing local variable.
It emits code to initialize this variable with the result of the
expression. Most recurrences of the expression can simply be replaced
by a reference to TMP. If the address of an array element is recog-
nized as a common subexpression, references to the element itself are
replaced by indirect references through TMP (see Fig. 7.4).

X = Al[i]; ™P = &A[i];
L. --> X := *[MP;
Ali] = y;

Fig. 7.4 Elimination of an array address computation

Here, ’& is the ’address of’ operator, and unary ’*’ is the indirec-
tion operator. (Note that EM actually has different instructions to
do a use-indirect or an assign-indirect.)

7.3. Implementation

7.3.1. The value number method

To determine whether two expressions have the same result, there
must be some way to determine whether their operands have the same
values. We use a system of value numbers [Kenn8la] in which each distinct
value of whatever type, created or used within the working window,
receives a unique identifying number, its value number. Two items have
the same value number if and only if, based only upon information from
the instructions in the window, their values are provably identical.
For example, after processing the statement

a = 4;



_45-

the variable a and the constant 4 have the same value number.

The value number of the result of an expression depends only on
the kind of operator and the value number(s) of the operand(s). The
expressions need not be textually equal, as shown in Fig. 7.5.

a = c; (1)
use(a * b); (2)
d := b; (3)

use(c * d); (4)

Fig. 7.5 Different expressions with the same value number

At line (1) a receives the same value number as c¢. At line (2) d
receives the same value number as b. At line (4) the expression "c *
d" receives the same value number as the expression "a * b" at line
(2), because the value numbers of their left and right operands are

the same, and the operator (*) is the same.
As another example of the value number method, consider Fig. 7.6.
use(a * b); (1)

a = 123; (2)
use(a * b); (3)

Fig. 7.6 Identical expressions with the different value numbers

Although textually the expressions "a * b" in line 1 and line 3 are
equal, a will have different value numbers at line 3 and line 1. The
two expressions will not mistakenly be recognized as equivalent.

7.3.2. Entities

The Value Number Method distinguishes between operators and

operands. The value numbers of operands are stored in a table, called
the symbol table. The value number of a subexpression depends on the
(root) operator of the expression and on the value numbers of its
operands. A table of "available expressions" is used to do this map-
ping.

CS recognizes the following kinds of EM operands, called entities:



_46-

- constant

- local variable

- external variable

- indirectly accessed entity
- offsetted entity

- address of local variable

- address of external variable
- address of offsetted entity
- address of local base

- address of argument base

- array element

- procedure identifier

- floating zero

- local base

- heap pointer

- ignore mask

Whenever a new entity is encountered in the working window, it 1is
entered in the symbol table and given a brand new value number. Most
entities have attributes (e.g. the offset in the current stackframe
for local variables), which are also stored in the symbol table.

An entity is called static if its value cannot be changed (e.g. a
constant or an address).

7.3.3. Parsing expressions

Common subexpressions are recognized by simulating the behaviour
of the EM machine. The EM code is parsed from left to right; as EM is

postfix code, this is a bottom up parse. At any point the current
state of the EM runtime stack is reflected by a simulated "fake stack",
containing descriptions of the parsed operands and expressions. A

descriptor consists of:

(1) the value number of the operand or expression
(2) the size of the operand or expression
(3) a pointer to the first line of EM-code

that constitutes the operand or expression

Note that operands may consist of several EM instructions. Whenever
an operator is encountered, the descriptors of its operands are on top
of the fake stack. The operator and the value numbers of the operands
are used as indices in the table of available expressions, to deter-
mine the value number of the expression.

During the parsing process, we keep track of the first line of each
expression; we need this information when we decide to eliminate the
expression.

7.3.4. Updating entities

An entity is assigned a value number when it is used for the first
time in the working window. If the entity is used as left hand side
of an assignment, it gets the value number of the right hand side.
Sometimes the effects of an instruction on an entity cannot be deter-
mined exactly; the current value and value number of the entity may
become inconsistent. Hence the current value number must be forgot-
ten. This is achieved by giving the entity a new value number that



_47-

was not used before. The entity is said to be killed.

As information is lost when an entity is killed, CS tries to save

as many entities as possible. In case of an indirect assignment
through a pointer, some analysis is done to see which variables cannot
be altered. For a procedure call, the interprocedural information

contained in the procedure table is used to restrict the set of enti-
ties that may be changed by the call. Local variables for which the
front end generated a register message can never be changed by an
indirect assignment or a procedure call.

7.3.5. Changing the EM text

When a new expression comes available, it is checked whether its
result is saved in a local that may go in a register. The last line
of the expression must be followed by a STL or SDL instruction
(depending on the size of the result) and a register message must be

present for this local. If there is such a local, it is recorded in
the available expressions table. Each time a new occurrence of this
expression is found, the value number of the local is compared against
the value number of the result. If they are different the local can-
not be used and is forgotten.

The available expressions are linked in a list. New expressions
are linked at the head of the list. In this way expressions that are
contained within other expressions appear later in the list, because
EM-expressions are postfix. The elimination process walks through the
list, starting at the head, to find the largest expressions first. If

an expression is eliminated, any expression later on in the list, con-
tained in the former expression, is removed from the list, as expres-
sions can only be eliminated once.

A STL or SDL is emitted after the first occurrence of the expres-
sion, unless there was an existing local variable that could hold the
result.

7.3.6. Desirability analysis

Although the global optimizer works on EM code, the goal is to
improve the quality of the object code. Therefore some machine-depen-
dent information is needed to decide whether it is desirable to elimi-
nate a given expression. Because it is impossible for the CS phase to
know exactly what code will be generated, some heuristics are used.
CS essentially looks for some special cases that should not be elimi-
nated. These special cases can be turned on or off for a given
machine, as indicated in a machine descriptor file.

Some operators can sometimes be translated into an addressing mode
for the machine at hand. Such an operator is only eliminated if its
operand is itself expensive, i.e. it is not just a simple load. The
machine descriptor file contains a set of such operators.

Eliminating the loading of the Local Base or the Argument Base by
the LXL resp. LXA instruction is only beneficial if the difference in
lexical levels exceeds a certain threshold. The machine descriptor
file contains this threshold.

Replacing a SAR or a LAR by an AAR followed by a LOI may possibly
increase the size of the object code. We assume that this is only
possible when the size of the array element is greater than some



_48-

limit.
There are back ends that can very efficiently translate the index

computing instruction sequence LOC SLI ADS. If this is the case, the
SLI instruction between a LOC and an ADS is not eliminated.

To handle unforseen cases, the descriptor file may also contain a
set of operators that should never be eliminated.

7.3.7. The algorithm

After these preparatory explanations, the algorithm itself is easy
to understand. For each instruction within the current window, the
following steps are performed in the given order

1. Check if this instruction defines an entity. If so, the set of
entities is updated accordingly.

2. Kill all entities that might be affected by this instruction.

Simulate the instruction on the fake-stack. If this instruction
is an operator, update the list of available expressions accord-
ingly.

The result of this process is a list of available expressions plus
the information needed to eliminate them. Expressions that are desir-
able to eliminate are eliminated. Next, the window is shifted and the
process is repeated.

7.4. Implementation.

In this section we will discuss the implementation of the CS
phase. We will first describe the basic actions that are undertaken by
the algorithm, than the algorithm itself.

7.4.1. Partioning the EM instructions

There are over 100 EM instructions. For our purpose we partition
this huge set into groups of instructions which can be more or less
conveniently handled together.

There are groups for all sorts of load instructions: simple loads,
expensive loads, loads of an array element. A load is considered expen-

sive when more than one EM instructions are involved in loading it. The
load of a lexical entity is also considered expensive. For instance:
LOF is expensive, LAL is not. LAR forms a group on its own, because

it is not only an expensive load, but also implicitly includes the
ternary operator AAR, which computes the address of the array element.

There are groups for all sorts of operators: unary, binary, and
ternary. The groups of operators are further partitioned according to
the size of their operand(s) and result.

There are groups for all sorts of stores: direct, indirect, array
element. The SAR forms a group on its own for the same reason as
appeared with LAR.

The effect of the remaining instructions is less clear. They do
not help very much in parsing expressions or in constructing our
pseudo symboltable. They are partitioned according to the following
criteria:

- They change the value of an entity without using the stack
(e.g. ZRL, DEE).



-49-

- They are subroutine calls (CAI, CAL).

- They change the stack in some irreproduceable way (e.g. ASP,
LFR, DUP).

- They have no effect whatever on the stack or on the entities.
This does not mean they can be deleted, but they can be
ignored for the moment (e.g. MES, LIN, NOP).

- Their effect is too complicate too compute, so we just assume
worst case behaviour. Hopefully, they do not occur very
often. (e.g. MON, STR, BIM).

- They signal the end of the basic block (e.g. BLT, RET, TRP).

7.4.2. Parsing expressions

To recognize expressions, we simulate the behaviour of the EM
machine, by means of a fake-stack. When we scan the instructions in
sequential order, we first encounter the instructions that load the
operands on the stack, and then the instruction that indicates the
operator, because EM expressions are postfix. When we find an instruc-
tion to load an operand, we load on the fake-stack a struct with the
following information:

(1) the value number of the operand

(2) the size of the operand

(3) a pointer to the first line of EM-code
that constitutes the operand

In most cases, (3) will point to the line that loaded the operand
(e.g. LOL, LOC), i.e. there is only one line that refers to this
operand, but sometimes some information must be popped to load the
operand (e.g. LOI, LAR). This information must have been pushed
before, so we also pop a pointer to the first line that pushed the
information. This line is now the first line that defines the operand.

When we find the operator instruction, we pop its operand(s) from
the fake-stack. The first line that defines the first operand is now the
first line of the expression. We now have all information to determine
whether the just parsed expression has occurred before. We also know
the first and last line of the expression; we need this when we decide
to eliminate it. Associated with each available expression is a set
of which the elements contains the first and last line of a recurrence
of this expression.

Not only will the operand(s) be popped from the fake-stack, but
the following will be pushed:

(1) the value number of the result
(2) the size of the result
(3) a pointer to the first line of the expression

In this way an item on the fake-stack always contains the necessary
information. EM expressions are parsed bottum up.

7.4.3. Updating entities

As said before, we build our private "symboltable", while scanning
the EM-instructions. The behaviour of the EM-machine is not only



-50-

reflected in the fake-stack, but also in the entities. When an entity
is created, we do not yet know its value, so we assign a brand new
value number to it. Each time a store-instruction is encountered, we
change the value number of the target entity of this store to the
value number of the token that was popped from the fake-stack.
Because entities may overlap, we must also "forget" the value numbers
of entities that might be affected by this store. Each such entity
will be killed, i.e. assigned a brand new valuenumber.

Because we lose information when we forget the value number of an
entity, we try to save as much entities as possible. When we store
into an external, we don’t have to kill locals and vice versa. Fur -
thermore, we can see whether two locals or two externals overlap,
because we know the offset from the local base, resp. the offset

within the data block, and the size. The situation becomes more com-
plicated when we have to consider indirection. The worst case is that
we store through an unknown pointer. In that case we kill all enti-

ties except those locals for which a so-called register message has been
generated; this register message indicates that this local can never
be accessed indirectly. If we know this pointer we can be more care-
ful. If it points to a local then the entity that is accessed through
this pointer can never overlap with an external. If it points to an
external this entity can never overlap with a local. Furthermore, in
the latter case, we can find the data block this entity belongs to.
Since pointer arithmetic is only defined within a data block, this
entity can never overlap with entities that are known to belong to
another data block.

Not only after a store-instruction but also after a subroutine-
call it may be necessary to kill entities; the subroutine may affect
global wvariables or store through a pointer. If a subroutine 1is
called that is not available as EM-text, we assume worst case
behaviour, i.e. we kill all entities without register message.

7.4.4. Additions and replacements.

When a new expression comes available, we check whether the result
is saved in a local that may go in a register. The last line of the
expression must be followed by a STL or SDL instruction, depending on
the size of the result (resp. WS and 2*WS), and a register message
must be present for this local. If we have found such a local, we
store a pointer to it with the available expression. Each time a new
occurrence of this expression is found, we compare the value number of
the local against the value number of the result. When they are dif-
ferent we remove the pointer to it, because we cannot use it.

The available expressions are singly linked in a list. When a new
expression comes available, we link it at the head of the list. In
this way expressions that are contained within other expressions
appear later in the list, because BEM-expressions are postfix. When we
are going to eliminate expressions, we walk through the list, starting
at the head, to find the largest expressions first. When we decide to
eliminate an expression, we look at the expressions in the tail of the
list, starting from where we are now, to delete expressions that are
contained within the chosen one because we cannot eliminate an expres-
sion more than once.



-51-

When we are going to eliminate expressions, and we do not have a
local that holds the result, we emit a STL or SDL after the line where
the expression was first found. The other occurrences are simply
removed, unless they contain instructions that not only have effect on
the stack; e.g. messages, stores, calls. Before each instruction that
needs the result on the stack, we emit a LOL or LDL. When the expres-
sion was an AAR, but the instruction was a LAR or a SAR, we append a
LOI resp. a STI of the number of bytes in an array-element after each
LOL/LDL.

7.4.5. Desirability analysis

Although the global optimizer works on EM code, the goal is to
improve the quality of the object code. Therefore we need some
machine dependent information to decide whether it is desirable to
eliminate a given expression. Because it is impossible for the CS
phase to know exactly what code will be generated, we use some heuris-
tics. In most cases it will save time when we eliminate an operator,
so we just do it. We only look for some special cases.

Some operators can in some cases be translated into an addressing
mode for the machine at hand. We only eliminate such an operator,
when its operand is itself "expensive", i.e. not just a simple load.
The user of the CS phase has to supply a set of such operators.

Eliminating the loading of the Local Base or the Argument Base by
the LXL resp. LXA instruction is only beneficial when the number of
lexical levels we have to go back exceeds a certain threshold. This
threshold will be different when registers are saved by the back end.
The user must supply this threshold.

Replacing a SAR or a LAR by an AAR followed by a LOI may possibly
increase the size of the object code. We assume that this is only
possible when the size of the array element is greater than some
(user-supplied) limit.

There are back ends that can very efficiently translate the index
computing instruction sequence LOC SLI ADS. If this is the case, we
do not eliminate the SLI instruction between a LOC and an ADS.

To handle unforeseen cases, the user may also supply a set of
operators that should never be eliminated.

7.4.6. The algorithm

After these preparatory explanations, we can be short about the
algorithm itself. For each instruction within our window, the follow-
ing steps are performed in the order given:

1. We check if this instructin defines an entity. If this is the case
the set of entities is updated accordingly.

2. We kill all entities that might be affected by this instruction.

The instruction is simulated on the fake-stack. Copy propagation
is done. If this instruction is an operator, we update the list
of available expressions accordingly.

When we have processed all instructions this way, we have built a
list of available expressions plus the information we need to elimi-
nate them. Those expressions of which desirability analysis tells us
so, we eliminate. The we shift our window and continue.



-52-

7.5. Source files of CS

The sources of CS are in the following files and packages:

cs.h

cS.cC

vnm

eliminate

avail

entity
getentity

kill

partition

profit

stack
alloc
aux

debug

declarations of global variables and data structures

the routine main; a driving routine to process the basic
blocks in the right order

implements a procedure that performs the value numbering on
one basic block

implements a procedure that does the transformations, if
desirable

implements a procedure that manipulates the list of avail-
able expressions

implements a procedure that manipulates the set of entities

implements a procedure that extracts the pseudo symboltable
information from EM-instructions; uses a small table

implements several routines that find the entities that
might be changed by EM-instructions and kill them

implements several routines that partition the huge set of
EM-instructions into more or less manageable, more or less
logical chunks

implements a procedure that decides whether it is advanta-
geous to eliminate an expression; also removes expressions
with side-effects

implements the fake-stack and operations on it
implements several allocation routines
implements several auxiliary routines

implements several routines to provide debugging and ver-
bose output



-53-

8. Stack pollution

8.1. Introduction

The "Stack Pollution" optimization technique (SP) decreases the
costs (time as well as space) of procedure calls. In the EM calling
sequence, the actual parameters are popped from the stack by the calling
procedure. The ASP (Adjust Stack Pointer) instruction is used for
this purpose. A call in EM is shown in Fig. 8.1

Pascal: EM:

f(a,2) LOC 2
LOE A
CAL F
ASP 4 -- pop 4 bytes

Fig. 8.1 An example procedure call in Pascal and EM

As procedure calls occur often in most programs, the ASP is one of the
most frequently used EM instructions.

The main intention of removing the actual parameters after a pro-
cedure call is to avoid the stack size to increase rapidly. Yet, in
some cases, it 1is possible to delay or even avoid the removal of the
parameters without letting the stack grow significantly. In this way,
considerable savings in code size and execution time may be achieved,
at the cost of a slightly increased stack size.

A stack adjustment may be delayed if there is some other stack
adjustment later on in the same basic block. The two ASPs can be com-
bined into one.

Pascal: EM: optimized EM:
f(a,2) LOC 2 LOC 2
g(3,b,c) LOE A LOE A

CAL F CAL F

ASP 4 LOE C

LOE C LOE B

LOE B LOC 3

LOC 3 CAL G

CAL G ASP 10

ASP 6

Fig. 8.2 An example of local Stack Pollution

The stacksize will be increased only temporarily. If the basic block
contains another ASP, the ASP 10 may subsequently be combined with
that next ASP, and so on.

For some back ends, a stack adjustment also takes place at the

point of a procedure return. There is no need to specify the number
of bytes to be popped at a return. This provides an opportunity to
remove ASPs more globally. If all ASPs outside any loop are removed,

the increase of the stack size will still only be small, as no such
ASP is executed more than once without an intervening return from the



-54-

procedure it is part of.

This second approach is not generally applicable to all target
machines, as some back ends require the stack to be cleaned up at the
point of a procedure return.

8.2. Implementation

There is one main problem the implementation has to solve. In BEM,
the stack is not only used for passing parameters, but also for evalu-
ating expressions. Hence, ASP instructions can only be combined or

removed if certain conditions are satisfied.

Two consecutive ASPs of one basic block can only be combined (as
described above) if:

1. On no point of text in between the two ASPs, any item is popped
from the stack that was pushed onto it before the first ASP.

2. The number of bytes popped from the stack by the second ASP must
equal the number of bytes pushed since the first ASP.

Condition 1. is not satisfied in Fig. 8.3.
Pascal: EM:

5 + f(10) + g(30) LOC
LOC
CAL
ASP
LFR
ADI
LOC
CAL
ASP
LFR
ADI

=)

-- cannot be removed
-- push function result

DR WM T — W
o

Fig. 8.3 An illegal transformation

If the first ASP were removed (delayed), the first ADI would add 10 and
f(10), instead of 5 and f(10).

Condition 2. is not satisfied in Fig. 8.4.



-55-

Pascal: EM:

£(10) + 5 * g(30) LOC
CAL
ASP
LFR
LOC
LOC
CAL
ASP
LFR
MLI
ADI

=)

-5 % g(30)

DR Q WL NTY—
o

Fig. 8.4 A second illegal transformation

If the two ASPs were combined into one ’ASP 4°, the constant 5 would
have been popped, rather than the parameter 10 (so *10 + f(10)*g(30)’
would have been computed).

The second approach to deleting ASPs (i.e. let the procedure
return do the stack clean-up) is only applied to the last ASP of every
basic block. Any preceding ASPs are dealt with by the first approach.
The last ASP of a basic block B will only be removed if:

- on no path in the control flow graph from B to any block containing
a RET (return) there is a basic block that, at some point of its
text, pops items from the stack that it has not itself pushed ear-
lier.

Clearly, if this condition is satisfied, no harm can be done; no other
basic block will ever access items that were pushed on the stack
before the ASP.

The number of bytes pushed onto or popped from the stack can be
easily encoded in a so called "pop-push table". The numbers in gen-
eral depend on the target machine word- and pointer size and on the
argument given to the instruction. For example, an ADS instruction is
described by:

-a-p+p

which means: an ’ADS n’ first pops an n-byte value (n being the argu-
ment), next pops a pointer-size value and finally pushes a pointer-size
value. For some infrequently used EM instructions the pop-push num-
bers cannot be computed statically.

The stack pollution algorithm first performs a depth first search
over the control flow graph and marks all blocks that do not satisfy
the global condition. Next it visits all basic blocks in turn. For
every pair of adjacent ASPs, it checks conditions 1. and 2. and com-
bines the ASPs if they are satisfied. The new ASP may be used as first
ASP in the next pair. If a condition fails, it simply continues with
the next ASP. Finally, the last ASP is removed if:

- nothing has been popped from the stack after the last ASP that was
pushed before it

- the block was not marked by the depth first search



the block is not

in a loop

-56-



-57-

9. Cross jumping

9.1. Introduction

The "Cross Jumping" optimization technique (CJ) [Wulf75a] is basi-
cally a space optimization technique. It looks for pairs of basic
blocks (B1,B2), for which:

SUCC(B1) = SUCC(B2) = {S}

(So B1 and B2 both have one and the same successor). If the last few

non-branch instructions are the same for Bl and B2, one such sequence
can be eliminated.

Pascal:

if cond then

S1
S3
else
S2
S3
(pseudo) EM:
TEST COND TEST COND
BNE *1 BNE *1
S1 S1
S3 ---> BRA *2
BRA *2 1:
1: S2
S2 2:
S3 S3
2:

Fig. 9.1 An example of Cross Jumping

As the basic blocks have the same successor, at least one of them ends
in an unconditional branch instruction (BRA). Hence no extra branch
instruction is ever needed, just the target of an existing branch
needs to be changed; neither the program size nor the execution time
will ever increase. In general, the execution time will remain the
same, unless further optimizations can be applied because of this
optimization.

This optimization 1is particularly effective, because it cannot

always be done by the programmer at the source level, as demonstrated
by the Fig. 8.2.



-58-

Pascal:

if cond then

x = f(4)
else

x = g(5)
EM:

LOC 4 LOC 5
CAL F CAL G
ASP 2 ASP 2
LFR 2 LFR 2
STL X STL X

Fig. 9.2 Effectiveness of Cross Jumping

At the source level there is no common tail, but at the EM level there
is a common tail.

9.2. Implementation

The implementation of cross jumping is rather straightforward.
The technique is applied to one procedure at a time. The control flow
graph of the procedure is scanned for pairs of basic blocks with the
same (single) successor and with common tails. Note that there may be
more than two such blocks (e.g. as the result of a case statement).
This is dealt with by repeating the entire process until no further
optimizations can de done for the current procedure.

If a suitable pair of basic blocks has been found, the control flow
graph must be altered. One of the basic blocks must be split into two.
The control flow graphs before and after the optimization are shown in
Fig. 9.3 and Fig. 9.4.

Fig. 9.3 CFG before optimization



-59.-

Fig. 9.4 CFG after optimization

Some attributes of the three resulting blocks (such as immediate domi -
nator) are updated.

In some cases, cross jumping might split the computation of an
expression into two, by inserting a branch somewhere in the middle.
Most code generators will generate very poor assembly code when pre-
sented with such EM code. Therefor, cross jumping is not performed in
these cases.



-60-

10. Branch Optimization

10.1. Introduction

The Branch Optimization phase (BO) performs two related (branch)
optimizations.

10.1.1. Fusion of basic blocks
If two basic blocks Bl and B2 have the following properties:

SUCC(B1) = {B2}
PRED(B2) = {Bl}
then Bl and B2 can be combined into one basic block. If Bl ends in an

unconditional jump to the beginning of B2, this jump can be elimi-
nated, hence saving a little execution time and object code size.
This technique can be used to eliminate some deficiencies introduced by
the front ends (for example, the "C" front end translates switch
statements inefficiently due to its one pass nature).

10.1.2. While-loop optimization

The straightforward way to translate a while loop is to put the
test for loop termination at the beginning of the loop.

while cond loop LAB1: Test cond
body of the loop > Branch On False To LAB2
end loop code for body of loop

Branch To LABI
LAB2:

Fig. 10.1 Example of Branch Optimization
If the condition fails at the Nth iteration, the following code gets

executed (dynamically):

conditional branch (which fails N-1 times)
unconditional branch
body of the loop

Z zz

-1
-1
An alternative translation is:

Branch To LAB2
LAB1 :

code for body of loop
LAB2 :

Test cond

Branch On True To LABI

This translation results in the following profile:
conditional branch (which succeeds N-1 times)

N
1 * unconditional branch
N-1 * body of the loop

So the second translation will be significantly faster if N >> 2. If
N=2, execution time will be slightly increased. On the average, the
program will be speeded up. Note that the code sizes of the two

translations will be the same.



-61-

10.2. Implementation

The basic block fusion technique is implemented by traversing the
control flow graph of a procedure, looking for basic blocks B with only

one successor (S). If one is found, it is checked if S has only one
predecessor (which has to be B). If so, the two basic blocks can in
principle be combined. However, as one basic block will have to be
moved, the textual order of the basic blocks will be altered. This
reordering causes severe problems in the presence of conditional
jumps . For example, if S ends in a conditional branch, the basic
block that comes textually next to S must stay in that position. So

the transformation in Fig. 10.2 is illegal.

LABI: Sl LABI: Sl
BRA LAB2 S2
. o> BEQ LAB3
LAB2: S2 .
BEQ LAB3 S3
S3

Fig. 10.2 An illegal transformation of Branch Optimization

If B is moved towards S the same problem occurs if the block before B
ends in a conditional jump. The problem could be solved by adding one
extra branch, but this would reduce the gains of the optimization to
zero. Hence the optimization will only be done if the block that fol-
lows S (in the textual order) is not a successor of S. This condition
assures that S does not end in a conditional branch. The condition
always holds for the code generated by the "C" front end for a switch
statement .

After the transformation has been performed, some attributes of
the basic blocks involved (such as successor and predecessor sets and
immediate dominator) must be recomputed.

The while-loop technique is applied to one loop at a time. The
list of basic blocks of the loop is traversed to find a block B that
satisfies the following conditions:

1. the textually next block to B is not part of the loop

2. the last instruction of B is an unconditional branch; hence B has
only one successor, say S

3. the textually next block of B is a successor of S

4. the last instruction of S is a conditional branch

If such a block B is found, the control flow graph is changed as
depicted in Fig. 10.3.



-62-

S1

Bcc

10.3 Transformation of the CFG by Branch Optimization

Fig.



-63-

11. Use-Definition analysis

11.1. Introduction

The "Use-Definition analysis" phase (UD) consists of two related
optimization techniques that both depend on "Use-Definition" informa-

tion. The techniques are Copy Propagation and Constant Propagation.
They are best explained via an example (see Figs. 11.1 and 11.2).
(1) A :=B A :=B
-->
(2) wuse(A) use(B)

Fig. 11.1 An example of Copy Propagation
(1) A =12 A =12
(2) wuse(A) use(12)

Fig. 11.2 An example of Constant Propagation

Both optimizations have to check that the value of A at line (2) can
only be obtained at line (1). Copy Propagation also has to assure
that the value of B is the same at line (1) as at line (2).

One purpose of both transformations is to introduce opportunities

for the Dead Code Elimination optimization. If the variable A is used
nowhere else, the assignment A := B becomes useless and can be elimi-
nated.

If B is less expensive to access than A (e.g. this is sometimes the
case if A is a local variable and B is a global variable), Copy Propa-
gation directly improves the code itself. If A is cheaper to access
the transformation will not be performed. Likewise, a constant as
operand may be cheeper than a variable. Having a constant as operand
may also facilitate other optimizations.

The design of UD is based on the theory described in section 14.1
and 14.3 of. [Aho78a] As a main departure from that theory, we do not
demand the statement A := B to become redundant after Copy Propaga-
tion. If B is cheaper to access than A, the optimization is always
performed; if B is more expensive than A, we never do the transforma-
tion. If A and B are equally expensive UD uses the heuristic rule to
replace infrequently wused variables by frequently used ones. This
rule increases the chances of the assignment to become useless.

In the next section we will give a brief outline of the data flow
theory used for the implementation of UD.

11.2. Data flow information

11.2.1. Use-Definition information

A definition of a variable A is an assignment to A. A definition is
said to reach a point p if there is a path in the control flow graph from
the definition to p, such that A is not redefined on that path.

For every basic block B, we define the following sets:
GEN[b] the set of definitions in b that reach the end of b.



-64-

KILL[b]
the set of definitions outside b that define a variable that 1is
changed in b.

IN[b] the set of all definitions reaching the beginning of b.

OUT[b] the set of all definitions reaching the end of b.

GEN and KILL can be determined by inspecting the code of the proce-
dure. IN and OUT are computed by solving the following data flow equa-
tions:

(1) OUT[b] IN[b] - KILL[b] + GENI[b]

(2) IN[b] OUT[pl] + ... + OUT[pn],
where PRED(b) = {pl, ... , pn}

11.2.2. Copy information

A copy is a definition of the form "A := B". A copy is said to be
generated in a basic block n if it occurs in n and there is no subsequent
assignment to B in n. A copy is said to be killed in n if:

(i) it occurs in n and there is a subsequent assignment to B within n,
or

(ii)
it occurs outside n, the definition A := B reaches the beginning of
n and B is changed in n (note that a copy also is a definition).

A copy reaches a point p, if there are no assignments to B on any path
in the control flow graph from the copy to p.

We define the following sets:
C_GEN[b] the set of all copies in b generated in b.
C_KILL[b]
the set of all copies killed in b.
C_IN[b] the set of all copies reaching the beginning of b.
C_OUT[b] the set of all copies reaching the end of b.

C_IN and C_OUT are computed by solving the following equations: (root
is the entry node of the current procedure; °*’ denotes set intersec-
tion)

(1) C_OUT[b] C_IN[b] - C_KILL[b] + C_GEN[b]
(2) C_IN[b] = C_OUT[pl] * ... * C_OUT[pn],
where PRED(b) = {pl, ... , pn} and b /= root
C_IN[root] = {all copies}

11.3. Pointers and subroutine calls

The theory outlined above assumes that variables can only be
changed by a direct assignment. This condition does not hold for EM.
In case of an assignment through a pointer variable, it is in general
impossible to see which variable is affected by the assignment. Simi-
lar problems occur in the presence of procedure calls. Therefore we
distinguish two kinds of definitions:

- an explicit definition is a direct assignment to one specific variable

- an implicit definition is the potential alteration of a variable as a
result of a procedure call or an indirect assignment.



-65-

An indirect assignment causes implicit definitions to all variables
that may be accessed indirectly, i.e. all local variables for which
no register message was generated and all global variables. If a pro-
cedure contains an indirect assignment it may change the same set of
variables, else it may change some global variables directly. The
KILL, GEN, IN and OUT sets contain explicit as well as implicit defini-
tions.

11.4. Implementation
UD first builds a number of tables:

locals:
contains information about the local variables of the current
procedure (offset,size,whether a register message was found for
it and, if so, the score field of that message)

defs: a table of all explicit definitions appearing in the current
procedure.

copies:

a table of all copies appearing in the current procedure.

Every variable (local as well as global), definition and copy is iden-
tified by a unique number, which is the index in the table. All tables

are constructed by traversing the EM code. A fourth table, "vardefs"
is used, indexed by a ’variable number’, which contains for every
variable the set of explicit definitions of it. Also, for each basic

block b, the set CHGVARS containing all variables changed by it is
computed.

The GEN sets are obtained in one scan over the EM text, by analyz-
ing every EM instruction. The KILL set of a basic block b is computed
by looking at the set of variables changed by b (i.e. CHGVARS[b]).
For every such variable v, all explicit definitions to v (i.e.
vardefs[v]) that are not in GEN[b] are added to KILL[b]. Also, the
implicit defininition of v 1is added to KILL[Db]. Next, the data flow
equations for use-definition information are solved, using a straight
forward, iterative algorithm. All sets are represented as bitvectors,
so the operations on sets (union, difference) can be implemented effi-
ciently.

The C_GEN and C_KILL sets are computed simultaneously in one scan
over the EM text. For every copy A := B appearing in basic block b we
do the following:

1. for every basic block n /= b that changes B, see if the definition
A := B reaches the beginning of n (i.e. check if the index number
of A := B in the "defs" table is an element of IN[n]); if so, add
the copy to C_KILL[n]

2. if B is redefined later on in b, add the copy to C_KILL[b], else
add it to C_GEN[b]

C_IN and C_OUT are computed from C_GEN and C_KILL via the second set

of data flow equations.

Finally, in one last scan all opportunities for optimization are
detected. For every use u of a variable A, we check if there is a
unique explicit definition d reaching u.

If the definition is a copy A := B and B has the same value at d as at



-66 -

u, then the use of A at u may be changed into B. The latter condition
can be verified as follows:

- if u and d are in the same basic block, see if there is any
assignment to B in between d and u

- if u and d are in different basic blocks, the condition is satis-
fied if there is no assignment to B in the block of u prior to u
and d is in C_IN[Db].

Before the transformation is actually done, UD first makes sure the

alteration is really desirable, as described before. The information

needed for this purpose (access costs of local and global variables)
is read from a machine descriptor file.

If the only definition reaching u has the form "A := constant", the use
of A at u is replaced by the constant.

11.5. Source files of UD

The sources of UD are in the following files and packages:

ud.h: declarations of global variables and data structures

ud.c: the routine main; initialization of target machine depen-
dent tables

defs: routines to compute the GEN and KILL sets and routines to
analyse EM instructions

const: routines involved in constant propagation

copy: routines involved in copy propagation

aux: contains auxiliary routines



-67 -

12. Live-Variable analysis

12.1. Introduction

The "Live-Variable analysis" optimization technique (LV) performs
some code improvements and computes information that may be used by
subsequent optimizations. The main task of this phase is the computa-
tion of live-variable information. [Aho78a section 14.4] A variable A is said
to be dead at some point p of the program text, if on no path in the
control flow graph from p to a RET (return), A can be used before being
changed; else A is said to be live.

A statement of the form
VARIABLE := EXPRESSION

is said to be dead if the left hand side variable is dead just after
the statement and the right hand side expression has no side effects
(i.e. it doesn’t change any variable). Such a statement can be elimi-
nated entirely. Dead code will seldom be present in the original pro-
gram, but it may be the result of earlier optimizations, such as copy
propagation.

Live-variable information is passed to other phases via messages
in the EM code. Live/dead messages are generated at points in the EM
text where variables become dead or live. This information is espe-
cially useful for the Register Allocation phase.

12.2. Implementation

The implementation uses algorithm 14.6 of. [Aho78a] First two sets
DEF and USE are computed for every basic block b:

DEF(b) the set of all variables that are assigned a value in b before
being used

USE(b) the set of all variables that may be used in b before being
changed.

(So variables that may, but need not, be used resp. changed via a pro-
cedure call or through a pointer are included in USE but not in DEF).
The next step is to compute the sets IN and OUT

IN[b] the set of all variables that are live at the beginning of b
OUT[b] the set of all variables that are live at the end of b

IN and OUT can be computed for all blocks simultaneously by solving
the data flow equations:

@D IN[b] = OUT[b] - DEF[b] + USE[b]
[2] OUT[b] = IN[sl] + ... + IN[sn] ;
where SUCC[b] = {sl, ... , sn}

The equations are solved by a similar algorithm as for the Use Defini-
tion equations (see previous chapter).

Finally, each basic block is visited in turn to remove its dead
code and to emit the live/dead messages. Every basic block b is tra-
versed from its last instruction backwards to the beginning of b.
Initially, all variables that are dead at the end of b are marked
dead. All others are marked live. If we come across an assignment to
a variable X that was marked live, a live-message is put after the
assignment and X is marked dead; if X was marked dead, the assignment



-68-

may be removed, provided that the right hand side expression contains
no side effects. If we come across a use of a variable X that was
marked dead, a dead-message is put after the use and X is marked live.
So at any point, the mark of X tells whether X is live or dead immedi-
ately before that point. A message is also generated at the start of
a basic block for every variable that was live at the end of the (tex-
tually) previous block, but dead at the entry of this block, or v.v.

Only local variables are considered. This significantly reduces
the memory needed by this phase, eases the implementation and 1is
hardly less efficient than considering all variables. (Note that it is

very hard to prove that an assignment to a global variable is dead).



-69-

13. Register Allocation

13.1. Introduction

The efficient usage of the general purpose registers of the target
machine plays a key role in any optimizing compiler. This subject,
often referred to as Register Allocation, has great impact on both the code
generator and the optimizing part of such a compiler. The code gener-
ator needs registers for at least the evaluation of arithmetic expres-
sions; the optimizer uses the registers to decrease the access costs
of frequently used entities (such as variables). The design of an
optimizing compiler must pay great attention to the cooperation of
optimization, register allocation and code generation.

Register allocation has received much attention in literature (see
[Leve8la, Chai8la, Frei74a] and [Site79a]).

13.2. Usage of registers in ACK compilers

We will first describe the major design decisions of the Amsterdam
Compiler Kit, as far as they concern register allocation. Subse-
quently we will outline the role of the Global Optimizer in the regis-
ter allocation process and the interface between the code generator
and the optimizer.

13.2.1. Usage of registers without the intervention of the Global Optimizer
Registers are used for two purposes:
for the evaluation of arithmetic expressions

2. to hold local variables, for the duration of the procedure they
are local to.

It is essential to note that no translation part of the compilers,
except for the code generator, knows anything at all about the regis-
ter set of the target computer. Hence all decisions about registers
are ultimately made by the code generator. Earlier phases of a com-
piler can only advise the code generator.

The code generator splits the register set into two: a fixed part
for the evaluation of expressions (called scratch registers) and a fixed
part to store local variables. This partitioning, which depends only
on the target computer, significantly reduces the complexity of regis-
ter allocation, at the penalty of some loss of code quality.

The code generator has some (machine-dependent) knowledge of the
access costs of memory locations and registers and of the costs of
saving and restoring registers. (Registers are always saved by the

called procedure). This knowledge is expressed in a set of procedures
for each target machine. The code generator also knows how many reg-
isters there are and of which type they are. A register can be of

type pointer, floating point or general.

The front ends of the compilers determine which local variables
may be put in a register; such a variable may never be accessed indi-
rectly (i.e. through a pointer). The front end also determines the
types and sizes of these variables. The type can be any of the regis-
ter types or the type loop variable, which denotes a general-typed vari-
able that 1is used as loop variable in a for-statement. All this
information is collected in a register message in the EM code. Such a



-70-

message is a pseudo EM instruction. This message also contains a score
field, indicating how desirable it is to put this variable in a regis-

ter. A front end may assign a high score to a variable if it was
declared as a register variable (which is only possible in some lan-
guages, such as "C"). Any compiler phase before the code generator

may change this score field, if it has reason to do so. The code gen-
erator bases its decisions on the information contained in the regis-
ter message, most notably on the score.

If the global optimizer is not used, the score fields are set by

the Peephole Optimizer. This optimizer simply counts the number of
occurrences of every local (register) variable and adds this count to
the score provided by the front end. In this way a simple, yet quite

effective register allocation scheme is achieved.

13.2.2. The role of the Global Optimizer

The Global Optimizer essentially tries to improve the scheme out-
lined above. It uses the following principles for this purpose:

- Entities are not always assigned a register for the duration of an
entire procedure; smaller regions of the program text may be con-
sidered too.

- several variables may be put in the same register simultaneously,
provided at most one of them is live at any point.

- besides local variables, other entities (such as constants and
addresses of variables and procedures) may be put in a register.

- more accurate cost estimates are used.

To perform its task, the optimizer must have some knowledge of the
target machine.

13.2.3. The interface between the register allocator and the code generator

The RA phase of the optimizer must somehow be able to express its
decisions. Such decisions may look like: ’put constant 1283 in a reg-
ister from line 12 to line 40°. To be precise, RA must be able to
tell the code generator to:

- initialize a register with some value
- update an entity from a register

- replace all occurrences of an entity in a certain region of text
by a reference to the register.

At least three problems occur here: the code generator is only used to
put local variables in registers, it only assigns a register to a
variable for the duration of an entire procedure and it is not used to
have some earlier compiler phase make all the decisions.

All problems are solved by one mechanism, that involves no changes
to the code generator. With every (non-scratch) register R that will
be used in a procedure P, we associate a new variable T, local to P.
The size of T is the same as the size of R. A register message is
generated for T with an exceptionally high score. The scores of all
original register messages are set to zero. Consequently, the code
generator will always assign precisely those new variables to a regis-
ter. If the optimizer wants to put some entity, say the constant
1283, in a register, it emits the code "T := 1283" and replaces all
occurrences of ’1283° by T. Similarly, it can put the address of a



-71-

procedure in T and replace all calls to that procedure by indirect
calls. Furthermore, it can put several different entities in T (and
thus in R) during the lifetime of P.

In principle, the code generated by the optimizer in this way
would always be valid EM code, even if the optimizer would be pre-
sented a totally wrong description of the target computer register

set. In practice, it would be a waste of data as well as text space
to allocate memory for these new variables, as they will always be
assigned a register (in the correct order of events). Hence, no mem-

ory locations are allocated for them. For this reason they are called
pseudo local variables.

13.3. The register allocation phase

13.3.1. Overview

The RA phase deals with one procedure at a time. For every proce-
dure, it first determines which entities may be put in a register. Such
an entity is called an item. For every item it decides during which
parts of the procedure it might be assigned a register. Such a region
is called a timespan. For any item, several (possibly overlapping)
timespans may be considered. A pair (item,timespan) is called an alloca-
tion. If the items of two allocations are both live at some point of
time in the intersections of their timespans, these allocations are
said to be rivals of each other, as they cannot be assigned the same reg-
ister. The rivals-set of every allocation is computed. Next, the
gains of assigning a register to an allocation are estimated, for
every allocation. With all this information, decisions are made which
allocations to store in which registers (packing). Finally, the EM text
is transformed to reflect these decisions.

13.3.2. The item recognition subphase
RA tries to put the following entities in a register:
- a local variable for which a register message was found

- the address of a local variable for which no register message was
found

- the address of a global variable
- the address of a procedure
- a numeric constant.

Only the address of a global variable may be put in a register, not the
variable itself. This approach avoids the very complex problems that
would be caused by procedure calls and indirect pointer references
(see [Aho78a sections 14.7 and 14.8] and [Spil7la]). Still, on most
machines accessing a global variable using indirect addressing through
a register is much cheaper than accessing it via its address. Simi-
larly, if the address of a procedure is put in a register, the proce-
dure can be called via an indirect call.

With every item we associate a register type. This type is
for local variables: the type contained in the register message

for addresses of variables and procedures: the pointer type
for constants: the general type



-72-

An entity other than a local variable is not taken to be an item if it
is used only once within the current procedure.

An item is said to be live at some point of the program text if its
value may be used before it is changed. As addresses and constants
are never changed, all items but local variables are always live. The
region of text during which a local variable is live is determined via
the live/dead messages generated by the Live Variable analysis phase of
the Global Optimizer.

13.3.3. The allocation determination subphase

If a procedure has more items than registers, it may be advanta-
geous to put an item in a register only during those parts of the pro-
cedure where it is most heavily used. Such a part will be called a
timespan. With every item we may associate a set of timespans. If
two timespans of an item overlap, at most one of them may be granted a
register, as there is no use in putting the same item in two registers

simul taneously. If two timespans of an item are distinct, both may be
chosen; the item will possibly be put in two different registers dur-
ing different parts of the procedure. The timespan may also consist

of the whole procedure.

A list of (item,timespan) pairs (allocations) is build, which will
be the input to the decision making subphase of RA (packing subphase).
This allocation list is the main data structure of RA. The descrip-
tion of the remainder of RA will be in terms of allocations rather

than items. The phrase "to assign a register to an allocation" means
"to assign a register to the item of the allocation for the duration
of the timespan of the allocation". Subsequent subphases will add

more information to this list.

Several factors must be taken into account when a timespan for an
item is constructed:

1. At any entrypoint of the timespan where the item is live, the regis-
ter must be initialized with the item

2. At any exit point of the timespan where the item is live, the item
must be updated.

In order to decrease these costs, we will only consider timespans with
one entry point and no live exit points.

13.3.4. The rivals computation subphase

As stated before, several different items may be put in the same
register, provided they are not live simultaneously. For every alloca-
tion we determine the intersection of its timespan and the lifetime of
its item (i.e. the part of the procedure during which the item 1is

live). The allocation is said to be busy during this intersection.
If two allocations are ever busy simultaneously they are said to be
rivals of each other. The rivals information is added to the alloca-

tion list.

13.3.5. The profits computation subphase

To make good decisions, the packing subphase needs to know which
allocations can be assigned the same register (rivals information) and
how much is gained by granting an allocation a register.



-73-

Besides the gains of using a register instead of an item, two
kinds of overhead costs must be taken into account:

- the register must be initialized with the item

- the register must be saved at procedure entry and restored at pro-
cedure exit.

The latter costs should not be due to a single allocation, as several
allocations can be assigned the same register. These costs are dealt
with after packing has been done. They do not influence the decisions
of the packing algorithm, they may only undo them.

The actual profits consist of improvements of execution time and
code size. As the former is far more difficult to estimate , we will
discuss code size improvements first.

The gains of putting a certain item in a register depends on how
the item 1is wused. Suppose the item is a pointer variable. On
machines that do not have a double-indirect addressing mode, two
instructions are needed to dereference the variable if it is not in a

register, but only one if it is put in a register. If the variable is
not dereferenced, but simply copied, one instruction may be sufficient
in both cases. So the gains of putting a pointer variable in a reg-

ister are higher if the variable is dereferenced often.

To make accurate estimates, detailed knowledge of the target
machine and of the code generator would be needed. Therefore, a sim-
plification has been made that substantially limits the amount of tar-
get machine information that is needed. The estimation of the number
of bytes saved does not take into account how an item is wused.
Rather, an average number is used. So these gains are computed as
follows:

#bytes_saved = #occurrences * gains_per_occurrence

The number of occurrences is derived from the EM code. Note that this
is not exact either, as there is no one-to-one correspondence between
occurrences in the EM code and in the assembler code.

The gains of one occurrence depend on:
1. the type of the item
2. the size of the item
3. the type of the register
and for local variables and addresses of local variables:
4. the type of the local variable
5. the offset of the variable in the stackframe

For every allocation we try two types of registers: the register type
of the item and the general register type. Only the type with the
highest profits will subsequently be used. This type is added to the
allocation information.

To compute the gains, RA uses a machine-dependent table that is
read from a machine descriptor file. By means of this table the number
of bytes saved can be computed as a function of the five properties.

The costs of initializing a register with an item is determined in
a similar way. The cost of one initialization is also obtained from
the descriptor file. Note that there can be at most one initialization
for any allocation.



_74-

To summarize, the number of bytes a certain allocation would save
is computed as follows:

net_bytes_saved = bytes_saved - init_cost
bytes_saved = #occurrences * gains_per_occ
init_cost = #initializations * costs_per_init

It is inherently more difficult to estimate the execution time
saved by putting an item in a register, because it is impossible to

predict how many times an item will be used dynamically. If an occur-
rence is part of a loop, it may be executed many times. If it is part
of a conditional statement, it may never be executed at all. In the

latter case, the speed of the program may even get worse if an ini-
tialization is needed. As a clear example, consider the piece of "C"
code in Fig. 13.1.

switch(expr) {
case 1: p(); break;
case 2: p(); p(); break;
case 3: p(); break;
default: break;

Fig. 13.1 A "C" switch statement

Lots of bytes may be saved by putting the address of procedure p in a
register, as p is called four times (statically). Dynamically, p will
be called zero, one or two times, depending on the value of the
expression.

The optimizer uses the following strategy for optimizing execution

t ime :

1. try to put items in registers during loops first

2. always keep the initializing code outside the loop

3. if an item is not used in a loop, do not put it in a register if

the initialization costs may be higher than the gains

The latter condition can be checked by determining the minimal number
of usages (dynamically) of the item during the procedure, via a short-
est path algorithm. In the example above, this minimal number is
zero, so the address of p is not put in a register.

The costs of one occurrence is estimated as described above for
the code size. The number of dynamic occurrences is guessed by look-
ing at the loop nesting level of every occurrence. If the item 1is
never used in a loop, the minimal number of occurrences is used. From
these facts, the execution time improvement 1is assessed for every
allocation.

13.3.6. The packing subphase

The packing subphase takes as input the allocation list and out-
puts a description of which allocations should be put in which regis-
ters. So it is essentially the decision making part of RA.

The packing system tries to assign a register to allocations one
at a time, in some yet to be defined order. For every allocation A, it
first checks if there is a register (of the right type) that is already



-75-

assigned to one or more allocations, none of which are rivals of A.
In this case A is assigned the same register. Else, A is assigned a
new register, if one exists. A table containing the number of free
registers for every type is maintained. It is initialized with the
number of non-scratch registers of the target computer and updated
whenever a new register is handed out. The packing algorithm stops
when no more allocations can or need be assigned a register.

After an allocation A has been packed, all allocations with non-
disjunct timespans (including A itself) are removed from the alloca-
tion list.

In case the number of items exceeds the number of registers, it is
important to choose the most profitable allocations. Due to the possi-
bility of having several allocations occupying the same register, this
problem is quite complex. Our packing algorithm uses simple heuristic
rules and avoids any combinatorial search. It has distinct rules for
different costs measures.

If object code size is the most important factor, the algorithm is
greedy and chooses allocations in decreasing order of their profits
attribute. It does not take into account the fact that other alloca-
tions may be passed over because of this decision.

If execution time is at prime stake, the algorithm first considers
allocations whose timespans consist of loops. After all these have
been packed, it considers the remaining allocations. Within the two
subclasses, it considers allocations with the highest profits first.
When assigning a register to an allocation with a loop as timespan,
the algorithm checks if the item has already been put in a register

during another loop. If so, it tries to use the same register for the
new allocation. After all packing has been done, it checks if the
item has always been assigned the same register (although not neces-
sarily during all loops). If so, it tries to put the item in that

register during the entire procedure. This is possible if the alloca-
tion (item,whole_procedure) is not a rival of any allocation with a
different item that has been assigned to the same register. Note that
this approach 1is essentially ’bottom up’, as registers are first
assigned over small regions of text which are later collapsed into
larger regions. The advantage of this approach is the fact that the
decisions for one loop can be made independently of all other loops.

After the entire packing process has been completed, we compute
for each register how much is gained in using this register, by simply
adding the net profits of all allocations assigned to it. This total
yield should outweigh the costs of saving/restoring the register at
procedure entry/exit. As most modern processors (e.g. 68000, Vax)
have special instructions to save/restore several registers, the dif-
ferential costs of saving one extra register are by no means constant.
The costs are read from the machine descriptor file and compared to the
total yields of the registers. As a consequence of this analysis,
some allocations may have their registers taken away.

13.3.7. The transformation subphase

The final subphase of RA transforms the EM text according to the
decisions made by the packing system. It traverses the text of the
currently optimized procedure and changes all occurrences of items at
points where they are assigned a register. It also clears the score



-76-

field of the register messages for normal local variables and emits
register messages with a very high score for the pseudo locals. At
points where registers have to be initialized with items, it generates
EM code to do so. Finally it tries to decrease the size of the stack-
frame of the procedure by looking at which local variables need not be
given memory locations.

13.4. Source files of RA

The sources of RA are in the following files and packages:

ra.h: declarations of global variables and data structures

ra.c: the routine main; initialization of target machine-depen-
dent tables

items : a routine to build the list of items of one procedure; rou-
tines to manipulate 1items

lifetime: contains a subroutine that determines when items are
live/dead

alloclist: contains subroutines that build the initial allocations
list and that compute the rivals sets.

profits: contains a subroutine that computes the profits of the allo-
cations and a routine that determines the costs of sav-
ing/restoring registers

pack: contains the packing subphase
xform: contains the transformation subphase
interval: contains routines to manipulate intervals of time

aux: contains auxiliary routines



-77 -

14. Compact assembly generation

14.1. Introduction

The "Compact Assembly generation phase" (CA) transforms the inter-
mediate code of the optimizer into EM code in Compact Assembly Lan-

guage (CAL) format. In the intermediate code, all program entities
(such as procedures, labels, global variables) are denoted by a unique
identifying number (see 3.5). In the CAL output of the optimizer
these numbers have to be replaced by normal identifiers (strings). The

original identifiers of the input program are used whenever possible.
Recall that the IC phase generates two files that can be used to map
unique identifying numbers to procedure names and global variable
names . For instruction labels CA always generates new names. The
reasons for doing so are:

- instruction labels are only visible inside one procedure, so they
can not be referenced in other modules

- the names are not very suggestive anyway, as they must be integer
numbers

- the optimizer considerably changes the control structure of the
program, so there is really no one to one mapping of instruction
labels in the input and the output program.

As the optimizer combines all input modules into one module, visibil-
ity problems may occur. Two modules Ml and M2 can both define an iden-
tifier X (provided that X is not externally visible in any of these
modules) . If MI and M2 are combined into one module M, two distinct
entities with the same name would exist in M, which 1is not
allowed. [Tane83a, section 11.1.4.3] In these cases, CA invents a new
unique name for one of the entities.

14.2. Implementation

CA first reads the files containing the procedure and global vari-

able names and stores the names in two tables. It scans these tables
to make sure that all names are different. Subsequently it reads the
EM text, one procedure at a time, and outputs it in CAL format. The

major part of the code that does the latter transformation is adapted
from the EM Peephole Optimizer.

The main problem of the implementation of CA is to assure that the
visibility rules are obeyed. If an identifier must be externally visi-
ble (i.e. it was externally visible in the input program) and the
identifier is defined (in the output program) before being referenced,
an EXA or EXP pseudo must be generated for it. (Note that the opti-
mizer may change the order of definitions and references, so some pseu-
dos may be needed that were not present in the input program). On the
other hand, an identifier may be only internally visible. If such an
identifier is referenced before being defined, an INA or INP pseudo must
be emitted prior to its first reference.

Acknowledgements

The author would like to thank Andy Tanenbaum for his guidance,
Duk Bekema for implementing the Common Subexpression Elimination phase
and writing the initial documentation of that phase, Dick Grune for
reading the manuscript of this report and Ceriel Jacobs, Ed Keizer,



-78-

Martin Kersten, Hans van Staveren and the members of the S.T.W. user’s
group for their interest and assistance.



-79-

References

References
a.
b.

Aho74a.
A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, Reading, Massachusetts (1974).

Aho78a.
A.V. Aho and J.D. Ullman, Principles of compiler design, Addison-Wesley,
Reading, Massachusetts (1978).

AlleS8la.
F.E. Allen, J. Cocke, and K. Kennedy, “Reduction of Operator
Strength” in Program Flow Analysis, ed. S.S. Muchnick and D. Jones,
Prentice-Hall, Englewood Cliffs, N.J. (1981).

Ank182a.
P. Anklam, D. Cutler, R. Heinen, and M. MacLaren, Engineering a compiler:
Vax-11 code generation and optimization, Digital Equipment Corporation (1982).

Bal86a.
H.E. Bal and A.S. Tanenbaum, “Language- and Machine-independent
Global Optimization on Intermediate Code,” Computer Languages, 11, 2,
pp. 105-121 (April 1986).

Ball79a.
J.E. Ball, “Predicting the Effects of Optimization on a Procedure
Body,” SIGPLAN Notices, 14, 8, pp. 214-220 (August 1979).

Cart77a.
J.L. Carter, “A Case Study of a New Code Generation Technique for
Compilers,” CACM, 20, 12, pp. 914-920 (December 1977).

Cart82a.
L.R. Carter, An analysis of Pascal Programs, UMl Research Press, Ann Arbor,
Michigan (1982).

Chai8la.
G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hop-
kins, and P.W. Markstein, “Register Allocation via Coloring,” Com-
puter Languages, 6, 1, pp. 47-57 (January 1981).

Cock77a.
J. Cocke and K. Kennedy, “An algorithm for Reduction of Operator
Strength,” CACM, 20, 11, pp. 850-856 (November 1977).

Davi8la.
J.W. Davidson, “Simplifying Code Generation Through Peephole Opti-
mization,” Ph.D. thesis, Dept. of Computer Science, Univ. of Ari-
zona (December 1981).

Faim80a.
R.N. Faiman and A.A. Kortesoja, “An Optimizing Pascal Compiler,”
IEEE Trans. on Softw. Eng., 6, 6, pp. 512-518 (November 1980).

Frei74a.
R.A. Freiburghouse, “Register Allocation Via Usage Counts,” CACM,
17, 11, pp. 638-642 (November 1974).



-80-

Freu83a.
S .M. Freudenberger and J.T. Schwartz, “Experience with the SETL
Optimizer,” TOPLAS, 5, 1, pp. 26-45 (Januari 1983).

Harr79a.
W.H. Harrison, “A New Strategy for Code Generation - the General-
Purpose Optimizing Compiler,” IEEE Trans. on Softw. Eng., 5, 4, pp. 367-373
(July 1979).

Ichb83a.
J.D. Ichbiah, *“Ada Programming Language - MILITARY STANDARD,”
ANSI/MIL-STD-1815A, U.S. Department of Defense (22 January 1983).

Ichb79a.
J.D. Ichbiah, “Rationale for the Design of the Ada Programming
Language,” SIGPLAN Notices, 14, 6 (June 1979)

John8la.
S.C. Johnson and D.M. Ritchie, The C Language Calling Sequence, Bell Labo-
ratories, Murray Hill, New Jersey (September 1981).

Katk73a.
G.R. Katkus, “A study of selective optimization techniques,” Ph.D.
Thesis, University of Southern California (1973).

Kenn81a.
K. Kennedy, “A Survey of Data Flow Analysis Techniques” in Program
Flow Analysis, ed. S.S. Muchnick and D. Jones, Prentice-Hall, Engle-
wood Cliffs (1981).

Kern79a.
B.W. Kernighan and M.D. Mcllroy, Unix programmer’s manual, Seventh Edition, 1,
Bell Laboratories, Murray Hill, New Jersey (January 1979).

Kirc83a.
W. Kirchgaesner, J. Uhl, G. Winterstein, G. Goos, M. Dausmann, and
S. Drossopoulou, An Optimizing Ada Compiler, Institut fur Informatik II,
Universitat Karlsruhe (February 1983).

Leng79a.
T. Lengauer and R.E. Tarjan, “A Fast Algorithm for Finding Domina-
tors in a Flowgraph,” TOPLAS, 1, 1, pp. 121-141 (July 1979).

LeveS8la.
B.W. Leverett, “Register Allocation in Optimizing Compilers,”
Ph.D. Thesis, QVMU-CS-81-103, Carnegie-Mellon University, Pitts-
burgh (February 1981).

Leve79a.
B.W. Leverett, R.G.G Cattell, S.O. Hobbs, J.M. Newcomer, A.H.
Reiner, B.R. Schatz, and W.A. Wulf, “An Overview of the Production-
Quality Compiler-Compiler Project,” QMU-CS-79-105, Carnegie-Mellon
University, Pittsburgh (1979).

Leve80a.
B.W. Leverett, R.G.G Cattell, S.O. Hobbs, J.M. Newcomer, A.H.
Reiner, B.R. Schatz, and W.A. Wulf, “An Overview of the Production-
Quality Compiler-Compiler Project,” IEEE Computer, 13, 8, pp. 38-49
(August 1980).

Lowr69a.

E.S. Lowry and C.W. Medlock, “Object Code Optimization,” CACM, 12,
I, pp. 13-22 (Januari 1969).



-81-

Mint79a.
R.J. Mintz, G.A. Fisher, and M. Sharir, “The design of a global
optimizer,” SIGPLAN Notices, 14, 9, pp. 226-234 (September 1979).
More79a.
E. Morel and C. Renvoise, “Global Optimization by Suppression of
Partial Redundancies,” CACM, 22, 2, pp. 96-103 (February 1979).
Perk79a.
D.R. Perkins and R.L. Sites, “Machine-independent Pascal code
optimization,” SIGPLAN Notices, 14, 8, pp. 201-207 (August 1979).
Phot81a.
D.S. Photopoulos, “Optimal mixed code generation for microcomput-
ers,” Ph.D. Thesis, Northeastern University (1981).
Poel72a.
W.L. van der Poel, The Programming Languages LISP and TRAC, Technische
Hogeschool Delft, Delft (1972).
Prab80a.
B. Prabhala and R. Sethi, “Efficient Computation of Expressions
with Common Subexpressions,” JACM, 27, 1, pp. 146-163 (Januari

1980) .

Purd72a.
P.W. Purdom and E.F. Moore, “Immediate Predominators in a Directed
Graph,” CACM, 15, 8, pp. 777-778 (August 1972).

Ritc78a.

D.M. Ritchie, The C Programming Language - Reference Manual, Bell Laborato-
ries, Murray Hill, New Jersey (1978).

Sche77a.
R.W. Scheifler, “An Analysis of Inline Substitution for a Struc-
tured Programming Language,” CACM, 20, 9, pp. 647-654 (September
1977) .

Seth70a.
R. Sethi and J.D. Ullman, “The Generation of Optimal Code for
Arithmetic Expressions,” JACM, 17, 4, pp. 715-728 (October 1970).

Shaf78a.
J.B. Shaffer, “Automatic subroutine generation in an optimizing
compiler,” Ph.D. Thesis, University of Maryland (1978).

Site79a.
R.L. Sites, “Machine-independent register allocation,” SIGPLAN
Notices, 14, 8, pp. 221-225 (August 1979).

Spil7la.
T.C. Spillman, “Exposing side-effects in a PL/I optimizing com-
piler” in Information Processing 1971, pp. 376-381, North-Holland Publish-
ing Company, Amsterdam (1971).

Tane83a.
A.S. Tanenbaum, H. van Staveren, E.G. Keizer, and J.W. Stevenson,
“Description of a machine architecture for use with block struc-
tured languages,” Rapport nr IR-81, Vrije Universiteit, Amsterdam
(August 1983).

Tane81la.
A.S. Tanenbaum, H. van Staveren, E.G. Keizer, and J.W. Stevenson,
“A Practical Toolkit for Making Portable Compilers,” Rapport nr



-82-

IR-74, Vrije Universiteit, Amsterdam (October 1981).
Tane83Db.
A.S. Tanenbaum, H. van Staveren, E.G. Keizer, and J.W. Stevenson,

“A Practical Toolkit for Making Portable Compilers,” CACM, 26, 9,
pp. 654-660 (September 1983).

Wulf75a.

W.A. Wulf, R.K. Johnsson, C.B. Weinstock, S.0O. Hobbs, and C.M.
Geschke, The Design of an Optimizing Compiler, American Elsevier Publishing
Company, New York (1975).

Wulf80a.

WM. Wulf, “PQCC: A Machine-Relative Compiler Technology,” QVU-

CS-80-144, Carnegie-Mellon University, Pittsburgh (25 september
1980) .



