
Amsterdam Compiler Kit Installation Guide

Ed Keizer

(revised for 3rd, 4th and 5th distribution by Ceriel Jacobs)

Vakgroep Informatica

Vrije Universiteit

Amsterdam

1. Introduction

This document describes the process of installing the Amsterdam Compiler Kit (ACK). It depends

on the combination of hard- and software how hard it will be to install the Kit. This description is intended

for a Sun-3 or SPARC workstation. Installation on VAXen running Berkeley UNIX® or Ultrix, Sun-2 sys-

tems and most System V UNIX systems should be easy. As of this distribution, installation on PDP-11’s or

other systems with a small address space is no longer supported. See section 8 for installation on other sys-

tems.

2. The ACK installation process

In the ACK installation process, three directory trees are used:

- the ACK source tree. This is the tree on the ACK distribution medium. For the rest of this document,

we will refer to this directory as $SRC_HOME;

- a configuration tree. This tree is built by the installation process and is used to do compilations in. Its

structure reflects that of the source tree, but this tree will mostly contain Makefiles and relocatable

objects. For the rest of this document, we will refer to this directory as $CONFIG;

- an ACK users tree. This tree is also built by the installation process. For the rest of this document,

we will refer to this directory as $TARGET_HOME;

After installation, the directories in $TARGET_HOME contain the following information:

bin the few utilities that knot things together. See the section about "Commands".

lib root of a tree containing almost all libraries used by commands. Files specific to a certain

machine are collected in one subtree per machine. E.g. "lib/pdp", "lib/z8000". The names

used here are the same names as used for subtrees of "$SRC_HOME/mach".

lib/descr command descriptor files used by the program ack.

lib/LLgen files used by the LL(1) parser generator.

lib/flex files used by the lexical analyzer generator Flex.

lib/m2 definition modules for Modula-2.

lib.bin root of a tree containing almost all binaries used by commands. All programs specific to a

certain machine are collected in one subtree per machine. E.g. "lib.bin/pdp",

"lib.bin/z8000". The names used here are the same names as used for subtrees of

"$SRC_HOME/mach".

lib.bin/ego files used by the global optimizer.

lib.bin/lint binaries for the lint passes and lint libraries.

lib.bin/ceg files used by the code-expander-generator.

etc contains the file "ip_spec.t" needed for EM interpreters and EM documentation.

config contains two include files:

-2-

em_path.h path names used by ack, intended for all utilities

local.h various definitions for local versions

These include files are specific for the current machine, so they are in a separate directory.

include/_tail_cc

include files needed by modules in the C library from lang/cem/libcc.

include/tail_ac

include files for ANSI C.

include/occam include files for occam.

include/_tail_mon

more or less system independent include files needed by modules in the library

lang/cem/libcc/mon.

h the #include files for:

arch.h definition of the ACK archive format

as_spec.h used by EM assembler and interpreters

bc_io.h used by the Basic run-time system

bc_string.h used by the Basic run-time system

cg_pattern.h used by the backend program "cg" and its bootstrap

cgg_cg.h used by the backend program "ncg" and its bootstrap

em_abs.h contains trap numbers and address for lin and fil

em_ego.h definition of names for some global optimizer

messages

em_flag.h definition of bits in array em_flag in

$TARGET_HOME/lib.bin/em_data.a. Describes parameters

effect on flow of instructions

em_mes.h definition of names for mes pseudo numbers

em_mnem.h instruction => compact mapping

em_pseu.h pseudo instruction => compact mapping

em_ptyp.h useful for compact code reading/writing,

defines classes of parameters

em_reg.h definition of mnemonics indicating register type

em_spec.h definition of constants used in compact code

ip_spec.h used by programs that read e.out files

m2_traps.h used by the Modula-2 run-time system

ocm_chan.h used by the occam run-time system

ocm_parco.h used by the occam run-time system

ocm_proc.h used by the occam run-time system

out.h defines the ACK a.out format

pc_err.h definitions of error numbers in Pascal

pc_file.h macro’s used in file handling in Pascal

pc_math.h used by the Pascal runtime system

ranlib.h defines symbol table format for archives

stb.h defines debugger symbol table types

modules root of a tree containing modules for compiler writers.

modules/man manual pages for all modules.

modules/lib contains module objects.

modules/h include files for some of the modules.

modules/pkg include files for some of the modules.

doc this directory contains the unformatted documents for the Kit. A list of the available doc-

uments can be found in the last section. These documents must be processed by [nt]roff.

-3-

man man files for various utilities.

When installing ACK on several types of machines with a shared file system, it may be useful to know that

the "doc", "etc", "h", "include", "lib" and "man" sub-directories do not depend on this particular installa-

tion. They do not contain binaries or path-dependent information. These directories can therefore be shared

between the ACK installations. This can be accomplished by creating the tree and suitable symbolic links

before starting the installation process.

For instance, let us say there is a file-system that is accessible from the different machines as

"/usr/share/local", and the ACK binary tree must be installed in "/usr/local/ack". In this case, proceed as fol-

lows:

− create a directory "/usr/share/local/ack", with subdirectories "doc", "etc", "h", "include", "lib" and

"man".

− create a directory "/usr/local/ack" and then create symbolic links "doc" to "/usr/share/local/ack/doc",

etc.

If this is done on all machines on which ACK will be installed, the machine-independent part only has to be

installed once, preferably on the fastest processor (it takes a long time to install all libraries).

The directories in the source tree contain the following information:

bin source of some shell-scripts.

lib mostly description files for the "ack" program.

etc the main description of EM sits here. Files (e.g. em_table) describing the opcodes and

pseudos in use, the operands allowed, effect in stack etc. etc.

mach just there to group the directories with all sources for each machine. The section about

"Machines" of this manual indicates which subdirectories are used for which systems.

These directories have subdirectories named:

cg the backend (*.m => *.s)

ncg the new backend (*.m => *.s)

as the assembler (*.s => *.o) or

assembler/linker (*.s + libraries => a.out)

cv conversion programs for a.out files

dl down-load programs

top the target optimizer

int source for an interpreter

libbc to create Basic run-time system and libraries

libcc to create C run-time system and libraries

libcc.ansi to create ANSI C run-time system and libraries

libpc to create Pascal run-time system and libraries

libf77 to create Fortran run-time system and libraries

libm2 to create Modula-2 run-time system and libraries

liboc to create occam run-time system and libraries

libem EM runtime system, only depending on CPU type

libend library defining end, edata, etext

libfp to create floating point library

libdb to create debugger support library

libsys system-dependent EM library

libce fast cc-compatible C compiler library support

ce code expander (fast back-end)

test various tests

Actually, some of these directories will only appear in the configuration tree.

-4-

The directory proto contains files used by most machines, like machine-independent

sources and Makefiles.

mach/proto/cg current backend sources

mach/proto/ncg new backend sources

mach/proto/as assembler sources

mach/proto/top target optimizer sources

mach/proto/fp floating point package sources

mach/proto/libg makefiles for compiling libraries

mach/proto/grind machine-independent debugger support

emtest contains prototype of em test set.

lang just there to group the directories for all front-ends.

lang/pc the Pascal front-end.

lang/pc/libpc

source of Pascal run-time system (in EM or C).

lang/pc/test some test programs written in Pascal.

lang/pc/comp the Pascal compiler proper.

lang/cem the C front-end.

lang/cem/libcc

directories with sources of C runtime system, libraries (in EM or C).

lang/cem/libcc/gen

sources for routines in chapter III of UNIX programmers manual, excluding stdio.

lang/cem/libcc/stdio

stdio sources.

lang/cem/libcc/math

sources for mathematical routines, normally available with the -lm option to cc.

lang/cem/libcc/mon

sources for routines in chapter II, mostly written in EM.

lang/cem/cemcom

the compiler proper.

lang/cem/cemcom.ansi

the ANSI C compiler proper.

lang/cem/cpp.ansi

the ANSI C preprocessor.

lang/cem/libcc.ansi

the ANSI C library sources.

lang/cem/ctest

the C test set.

lang/cem/ctest/cterr

programs developed for pinpointing previous errors.

lang/cem/ctest/ct*

the test programs.

lang/cem/lint a C program checker.

lang/cem/lint/lpass1

the first pass of lint.

lang/cem/lint/lpass1.ansi

the first pass of lint, this time for ANSI C.

-5-

lang/cem/lint/lpass2

the second pass of lint, shared between ANSI C and "old-fashioned" C.

lang/cem/lint/llib

programs for producing lint libraries.

lang/basic the Basic front-end.

lang/basic/src

the compiler proper.

lang/basic/lib

the Basic run-time library source.

lang/basic/test

various Basic programs.

lang/occam the occam front-end.

lang/occam/comp

the compiler proper.

lang/occam/lib

source of occam run-time system (in EM or C).

lang/occam/test

some occam programs.

lang/m2 the Modula-2 front-end.

lang/m2/comp the compiler proper.

lang/m2/libm2 source of Modula-2 run-time system (in EM, C and Modula-2).

lang/m2/m2mm the Modula-2 makefile generator.

lang/m2/test some Modula-2 example programs.

lang/fortran the Fortran front-end (translates Fortran into C). This compiler is not a part of ACK, but is

included because it adds another language. The Fortran system carries the following

copyright notice:

/**

Copyright 1990, 1991 by AT&T Bell Laboratories and Bellcore.

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that the copyright notice and this

permission notice and warranty disclaimer appear in supporting

documentation, and that the names of AT&T Bell Laboratories or

Bellcore or any of their entities not be used in advertising or

publicity pertaining to distribution of the software without

specific, written prior permission.

AT&T and Bellcore disclaim all warranties with regard to this

software, including all implied warranties of merchantability

and fitness. In no event shall AT&T or Bellcore be liable for

any special, indirect or consequential damages or any damages

whatsoever resulting from loss of use, data or profits, whether

in an action of contract, negligence or other tortious action,

arising out of or in connection with the use or performance of

this software.

**/

-6-

lang/fortran/comp

the compiler proper.

lang/fortran/lib

source of Fortran runtime system and libraries.

fast contains sub-directories for installing the fast ACK compatible compilers.

fast/driver

contains the sources of the fast ACK compatible compiler drivers.

fcc contains the fast cc-compatible C compiler for SUN-3 and VAX.

util contains directories with sources for various utilities.

util/ack the program used for translation with the Kit.

util/opt the EM peephole optimizer (*.k => *.m).

util/ego the global optimizer.

util/topgen the target optimizer generator.

util/misc decode (*.[km] => *.e) + encode (*.e => *.k).

util/data the C-code for $TARGET_HOME/lib.bin/em_data.a. These sources are created by the

Makefile in ‘etc‘.

util/ass the EM assembler (*.[km] + libraries => e.out).

util/arch the archivers to be used for all EM utilities.

util/cgg a program needed for compiling backends.

util/ncgg a program needed for compiling the newest backends.

util/cpp the C preprocessor.

util/shf various shell files.

util/LLgen the extended LL(1) parser generator.

util/amisc contains some programs handling ACK a.out format, such as anm, asize.

util/cmisc contains some programs to help in resolving name conflicts, and a dependency generator

for makefiles.

util/led the ACK link-editor, reading ACK relocatable a.out format, and writing ACK a.out for-

mat.

util/int an EM interpreter, written in C. Very useful for checking out software, but slow.

util/ceg code expander generator.

util/grind a symbolic debugger.

util/byacc this is Berkeley yacc, in the public domain.

util/flex this is a replacement for lex. It carries the following copyright notice:

Copyright (c) 1990 The Regents of the University of California.

All rights reserved.

This code is derived from software contributed to Berkeley by

Vern Paxson.

The United States Government has rights in this work pursuant

to contract no. DE-AC03-76SF00098 between the United States

Department of Energy and the University of California.

Redistribution and use in source and binary forms are permitted

provided that: (1) source distributions retain this entire

copyright notice and comment, and (2) distributions including

-7-

binaries display the following acknowledgement: ‘‘This product

includes software developed by the University of California,

Berkeley and its contributors’’ in the documentation or other

materials provided with the distribution and in all advertising

materials mentioning features or use of this software. Neither the

name of the University nor the names of its contributors may be

used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.

All path names mentioned in the text of this document are relative to $SRC_HOME, unless they start with

’/’ or one of $SRC_HOME, $TARGET_HOME or $CONFIG.

3. Restoring the ACK tree

The process of installing the Amsterdam Compiler Kit is quite simple. The first step is to restore the

Amsterdam Compiler Kit distribution tree structure. Proceed as follows

− Create a directory, for example /usr/share/local/src/ack, on a device with at least 15 Megabytes

left. This directory will be $SRC_HOME.

− Change to that directory (cd ...).

− Extract all files from the distribution medium, for instance magtape: tar x.

− Keep a copy of the original distribution to be able to repeat the process of installation in case of

disasters. This copy is also useful as a reference point for diff-listings.

4. Adapting ACK to the local system

Before compiling the sources in the Kit some installation dependent actions have to be taken. Most

of these are performed by an interactive shell script in the file $SRC_HOME/first/first. Calling this script

should be done from another directory, for instance an empty directory which will later become $CONFIG.

The actions of the first script are:

− Asking for the path names of the ACK source directory ($SRC_HOME), the configuration directory

($CONFIG), and the ACK users directory ($TARGET_HOME). About 5M are needed for the con-

figuration tree. The disk space needed for the ACK users tree depends on which front-ends and back-

ends are to be installed. For instance, on our SPARC systems we have installed all languages and 6

back-ends, including the system-independent part. This amounts to about 16M. On our SUN-3 sys-

tems, we have installed all front-ends and 5 back-ends, but only the machine-dependent part. The

machine-independent directories are symbolic links to the SPARC ACK users tree. We also have the

fast ACK compilers installed on the SUN-3’s. The total amount of disk-space used is less than 8M.

− Asking for what type of system the binary tree must be produced for and creating the shell script

"ack_sys" in the Kit’s bin directory. Sev eral utilities make use of "ack_sys" to determine the type of

system. The current choice is between:

answer system type default machine

vax_bsd4_1a VAX11 + BSD4.1a vax4

vax_bsd4_2 VAX11 + BSD4.2 vax4

vax_sysV_2 VAX11 + System V.2 vax4

i386 Intel 80386 system + Xenix System V i386

sun3 Sun-3 Motorola 68020 workstation sun3

sun2 Sun-2 Motorola 68010 workstation sun2

m68_sysV_0 68000 + Uniplus System V.0 mantra

-8-

m68020 Motorola 68020 VME131 + System V/68 R2V2.1 m68020

sparc Sun-4 or SPARC workstation running SunOs 4 sparc

sparc_solaris Sun-4 or SPARC workstation running Solaris 2 sparc_solaris

ANY Neither of the above ???

For some of these, the installation procedure has not been tested, as we don’t hav e them. For others,

the installation procedure has only been tested with earlier distributions, as we don’t hav e those sys-

tems anymore. However, the sun3 and sparc systems are known to behave reasonably. The

sparc_solaris system has only been tested with the GNU C compiler, because we don’t hav e the SUN

C compiler (it is unbundled in Solaris 2). The Sun systems should run SunOs Release 3.0 or newer.

The i386 choice may also be used for Intel 80386 or 80486 systems running UNIX System V Release

4. These systems are also able to run Xenix System V binaries. If the target system is not on this list,

choose one that comes close. If none of them come close, use the "ANY" choice. For ANY, any

name can be used, but the Kit will not be able to compile programs for the target system. See the

section about "compilation on a different machine".

− Setting the default machine for which code is produced to the local type of system according to the

table above. This in done in the file "$TARGET_HOME/config/local.h". See also section 9.1.

− Asking for things that don’t hav e to be installed.

− Producing a shell script called "INSTALL" that will take care of the ACK installation process.

5. Compiling the Kit

The next step in the installation process is to run the "INSTALL" shell-script. When using a Bourne-

shell, type:

sh INSTALL > INSTALL.out 2>&1 &

When using a C-shell, type:

sh INSTALL >& INSTALL.out &

This shell-script performs the following steps:

− Produce a configuration tree ($CONFIG), reflecting the structure of the source tree.

− Produce Makefiles in $CONFIG. As mentioned before, compilations will be done in the configura-

tion tree, not in the source tree. Most configuration directories will have Makefiles used to compile

and install the programs in that directory. All programs needed for compilation and/or cross compi-

lation with the Kit are installed in $TARGET_HOME by these Makefiles. These Makefiles are pro-

duced from corresponding files called "proto.make" in the source tree. In fact, the "proto.make" files

are almost complete Makefiles, except for some macro definitions that are collected by the first script.

The Makefiles adhere to a standard which is described in the section 9.

− Copy "Action" files to the configuration tree and editing them to reflect the choices concerning the

parts of ACK that have to be installed. "Action" files are described below.

− Copy part of the source tree to the ACK users tree (include files, manual pages, documentation, et

cetera).

− Calling the "TakeAction" script. All these Makefiles do not have to be called separately. We wrote a

shell script calling the make’s needed to install the whole Kit. This script consists of the file

$SRC_HOME/TakeAction and a few files called Action in some configuration directories. The

Action files describe in a very simple form which actions have to be performed in which directories.

The default action is to start "make install && make clean". The output of each make is div erted to a

file called "Out" in the same directory as the make was started in. If the make was successful (return

code 0) the Out file is removed and the script TakeAction produces a small message indicating that it

succeeded in fulfilling its goal. If the make was not successful (any other return code) the Out file is

left alone for further examination and the script TakeAction produces a small message indicating that

it failed.

For some programs the scripts already know they can’t be installed on the local type of system. In

-9-

that case they produce a message "Sorry," and happily proceed with further installation com-

mands.

Installation of the Kit might take anything from a few hours to more than a day, depending on the speed of

the local machine and what must be installed.

If the installation succeeded, the Kit is ready to be used. Read section 6 and the manuals provided with the

Kit (in the $TARGET_HOME/man directory) on how to use it.

5.1. Problems

5.1.1. on Unisoft m68000 systems.

The Unisoft C compiler has a bug which impedes the correct translation of the peephole optimizer.

For a more detailed description of this phenomenon see the file "$SRC_HOME/mach/m68k2/Unisoft_bug".

(This observation was made in 1985 or so, so it is probably no longer true).

5.1.2. with backends

The backends for the PDP11, VAX, Motorola 68000 and 68020, SPARC, Intel 8086, and Intel 80386

have been heavily used by ourselves and are well tested. The backends for the other machines are known to

run our own test programs, but might reveal errors when more heavily used.

5.2. An example output of TakeAction.

System definition -- done

EM definition library -- done

C utilities -- done

Flex lexical analyzer generator -- done

Yacc parser generator -- done

system-call interface module -- done

.

.

.

EM Global optimizer -- done

ACK archiver -- done

Program ’ack’ -- done

Bootstrap for backend tables -- done

Bootstrap for newest form of backend tables -- done

.

.

.

C frontend -- done

ANSI-C frontend -- done

ANSI-C preprocessor -- done

ANSI-C header files -- done

Failed for LINT C program checker, see lang/cem/lint/Out

Pascal frontend -- done

Basic frontend -- done

.

.

.

Vax 4-4 assembler -- done

Vax 4-4 backend -- done

Vax target optimizer -- done

ACK a.out to VAX a.out conversion program -- done

Sorry, Vax code expander library can only be made on vax* systems

-10-

Vax 4-4 EM library -- done

Vax 4-4 debugger support library -- done

Vax 4-4 etext,edata,end library -- done

Vax 4-4 systemcall interface -- done

.

.

.

The lines starting with "Sorry, " indicate that certain programs cannot be translated on the local machine.

The lines starting with "Failed for" indicate that certain programs/libraries were expected to, but did not

compile. In this example, the installation of LINT failed. To repeat a certain part of the installation, look in

the Action file, which resides in the root of the configuration tree, for the directory in which that part is to

be found. If that directory contains an Action file issue the command "sh $CONFIG/bin/TakeAction", oth-

erwise type "make install".

6. Commands

The following commands are available in the $TARGET_HOME/bin directory after compilation of

the Kit:

ack, acc, abc, apc, ocm, m2, f2c and their links

the names mentioned here can be used to compile Pascal, C, etc... programs. Most of the

links can be used to generate code for a particular machine. See also the section about

"Machines".

arch the archiver used for the EM- and universal assembler/loader.

aal the archiver used for ACK objects.

em this program selects a interpreter to execute an e.out file. Interpreters exist for PDP-11

and Motorola 68000 systems.

eminform the program to unravel the post-mortem information of the EM interpretator for the

PDP-11.

LLgen the LL(1) parser generator.

ack_sys a shell script producing an identification of the target system. Used by some utilities to

determine what is, and what is not feasible on the target system.

march a shell script used while compiling libraries.

asize, anm, astrip

do the same as size, nm and strip, but for ACK object format.

mkdep a dependency generator for makefiles.

cid, prid, cclash

some utilities for handling name clashes in C programs. Some systems have C-compilers

with only 7 or 8 characters significant in identifiers.

tabgen a utility for generating character tables for C-programs.

int an EM interpreter. This one is written in C, and is very useful for checking out programs.

grind a source level debugger for C, ANSI-C, Modula-2 and Pascal.

afcc, afm2, afpc

these are ACK-compatible fast C, Modula-2 and Pascal compilers, available for M68020,

VAX and Intel 80386 systems. They compile very fast, but produce slow code.

fcc this is a cc-compatible fast C compiler, available on SUN-3 and VAX systems. It compiles

very fast, but produces slow code.

We currently make the Kit available to our users by telling them that they should include the $TAR-

GET_HOME/bin directory in their PATH shell variable. The programs will still work when moved to a dif-

ferent directory or linked to. Copying should preferably be done with tar, since links are heavily used.

-11-

Renaming of the programs linked to ack will not always produce the desired result. This program uses its

call name as an argument. Any call name not being cc, acc, abc, pc, f2c, ocm, m2, or apc will be inter-

preted as the name of a ’machine description’ and the program will try to find a description file with that

name. The installation process will only touch the utilities in the $TARGET_HOME/bin directory, not

copies of these utilities.

7. Machines

Below is a table with entries for all commands in the bin directory used to (cross)compile for a par-

ticular machine. The name in the first column gives the name in the bin directory. The column headed dir

indicates which subdirectories of $TARGET_HOME/lib and/or $TARGET_HOME/lib.bin are needed for

compilation. The column head i/p contains the integer and pointer size used in units of bytes. The subdi-

rectories with the same name in mach contain the sources. A * in the column headed ’fp’ indicates that

floating point can be used for that particular machine. A + in that column indicates that floating point is

available under the ’-fp’ option. In this case, software floating point emulation is used.

command system i/p languages fp dir remarks

pdp PDP/UNIX V7 2/2 C * pdp

Pascal

Basic

occam

Modula-2

vax4 VAX/BSD 4.? 4/4 C * vax4

System V.2 Pascal

Basic

occam

Modula-2

Fortran

sparc Sun-4 4/4 C * sparc

Pascal

Basic

occam

Modula-2

Fortran

sparc_solaris Sun-4 4/4 C * sparc_solaris

Pascal

Basic

occam

Modula-2

Fortran

m68k2 M68000/ 2/4 C + m68k2

Unisoft Pascal

Basic

occam

Modula-2

m68k4 M68000/ 4/4 C + m68k4

Unisoft Pascal m68k2

Basic

occam

-12-

Modula-2

Fortran

pmds M68000/ 2/4 C + pmds Philips Micro

PMDS Pascal m68k2 Devel. System

Basic

occam

Modula-2

pmds4 M68000/ 4/4 C + pmds4 Philips Micro

PMDS Pascal m68k2 Devel. System

Basic m68k4

occam

Modula-2

Fortran

mantra M68000/ 4/4 C + mantra

Sys V.0 Pascal m68k2

Basic m68k4

occam

Modula-2

Fortran

m68020 M68020/ 4/4 C + m68020

Sys V/68 R2V2.1 Pascal

Basic

occam

Modula-2

Fortran

sun3 Sun-3 R4.1 4/4 C + sun3

Pascal m68020

Basic

occam

Modula-2

Fortran

sun2 Sun-2 R3.0 4/4 C + sun2

Pascal m68k4

Basic m68k2

occam

Modula-2

Fortran

i86 IBM PC/IX 2/2 C + i86 IBM PC with PC/IX

Pascal Causes kernel crashes

Basic

occam

Modula-2

xenix3 Microsoft 2/2 C + xenix3 IBM AT with Xenix

Xenix V3 Pascal i86

Basic

-13-

occam

Modula-2

i386 SCO Xenix 4/4 C + i386 Intel 80386

System V Pascal Xenix System V

Basic

occam

Modula-2

Fortran

minix Minix PC 2/2 C + minix IBM PC running Minix

Pascal i86

Basic

occam

Modula-2

minixST ST Minix 2/4 C + minixST Atari ST running Minix

Pascal m68k2

Basic

occam

Modula-2

z8000 Zilog 8000 2/2 C z8000 Central Data

Pascal CPU board

Basic Assembler/loader

occam

Modula-2

em22 EM machine 2/2 C * em22 Needs interpreter

Pascal

Basic

occam

Modula-2

em24 EM machine 2/4 C * em24 Needs interpreter

Pascal

Basic

occam

Modula-2

em44 EM machine 4/4 C * em44 Needs interpreter

Pascal

Basic

occam

Modula-2

Fortran

6500 6502/BBC 2/2 C 6500 Assembler/loader

Pascal

Basic

occam

Modula-2

-14-

6800 Bare 6800 6800 Assembler only

6805 Bare 6805 6805 Assembler only

6809 Bare 6809 6809 Assembler only

ns Bare NS16032 4/4 C ns

Pascal

Basic

occam

Modula-2

Fortran

i80 Hermac/z80 2/2 C i80

Pascal

Basic

occam

Modula-2

z80 Hermac/z80 2/2 C z80 i80 is faster

Pascal

Basic

occam

Modula-2

s2650 Signetics s2650 Assembler only

arm Acorn 4/4 C * arm Assembler/loader

Archimedes Pascal

Basic

occam

Modula-2

Fortran

The commands em22, em24 and em44 produce e.out files with EM machine code which must be inter-

preted. The Kit contains three interpreters: one running under PDP 11/V7 UNIX, one for the M68000, run-

ning under the PMDS system, Sun systems, the Mantra system, etc, and a portable one, written in C. The

first one can only interpret 2/2 e.out files, the second takes 2/4 and 4/4 files, and the last one takes 2/2, 2/4

and 4/4. The PDP 11 interpreter executes floating point instructions.

The program $TARGET_HOME/bin/em calls the appropriate interpreter. The interpreters are looked for

in the em22, em24 and em44 subdirectories of $TARGET_HOME/lib.bin. The third interpreter is available

as the program $TARGET_HOME/bin/int in the bin directory.

8. Compilation on a different machine.

The installation mechanism of the Kit is supposed to be portable across UNIX machines, so the Kit

can be installed and used as a cross-compiler for the languages it supports on any UNIX machine. The pres-

ence of most UNIX utilities is essential for compilation. A few of the programs certainly needed are: sh, C-

compiler, sed, ed, make, and awk.

8.1. Backend

The existence of a backend with a system call library for the target system is essential for producing

executable files for that system. Rewriting the system call library if the one supplied does not work on the

target system is fairly straightforward. If no backend exists for the target CPU type, a new backend has to

be written which is a major undertaking.

-15-

8.2. Universal assembler/loader, link editor

For most machines, the description files in $TARGET_HOME/lib/*/descr use our universal assem-

bler and our link editor. The load file produced is not directly usable in any system known to us, but has to

be converted before it can be put to use. The cv programs convert our a.out format into executable files.

The dl programs present for some machines unravel our a.out files and transmit commands to load memory

to a microprocessor over a serial line. The file $TARGET_HOME/man/man5/ack.out.5 contains a descrip-

tion of the format of the universal assembler load file. It might be useful to those who wish or need to write

their own conversion programs. Also, a module is included to read and write our a.out format. See $TAR-

GET_HOME/man/man3/object.3.

9. Options

9.1. Default machine

There is one important option in $TARGET_HOME/config/local.h. The utility ack uses a default

machine name when called as acc, cc, abc, apc, pc, ocm, m2, f2c, or ack. The machine name used by

default is determined by the definition of ACKM in $TARGET_HOME/config/local.h. The Kit is dis-

tributed with "sun3" as the default machine, but the shell script "first" in the directory "first" alters this to

suit the target system. There is nothing against using the Kit as a cross-compiler and by default produce

code that can’t run on the local system.

9.2. Pathnames

Absolute path names are concentrated in "$TARGET_HOME/config/em_path.h". Only the utilities

ack, flex, and LLgen use absolute path names to access files in the Kit. The tree is distributed with /usr/em

as the working directory. The definition of EM_DIR in em_path.h should be altered to specify the root

directory for the Compiler Kit binaries on the local system ($TARGET_HOME). This is done automati-

cally by the shell script "first" in the directory "first". Em_path.h also specifies which directory should be

used for temporary files. Most programs from the Kit do indeed use that directory although some remain

stubborn and use /tmp.

The shape of the tree should not be altered lightly because most Makefiles and the utility ack know the

shape of the ACK tree. The knowledge of the utility ack about the shape of the tree is concentrated in the

files in the directory $TARGET_HOME/lib/*/descr and $TARGET_HOME/lib/descr/*.

10. Makefiles

Most directories contain a "proto.make", from which a Makefile is derived. Apart from commands

applying to that specific directory these files all recognize a few special commands. When called with one

of these they will apply the command to their own directory. The special commands are:

install recompile and install all binaries and libraries.

Some Makefiles allow errors to occur in the programs they call. They ignore such

errors and notify the user with the message "˜....... error code n: ignored". When-

ev er such a message appears in the output it can be ignored.

cmp recompile all binaries and libraries and compare them to the ones already installed.

pr print the sources and documentation on the standard output.

opr make pr | opr

Opr should be an off-line printer daemon. On some systems it exists under

another name e.g. lpr. The easiest way to call such a spooler is using a shell script

with the name opr that calls lpr. This script should be placed in /usr/bin or $TAR-

GET_HOME/bin or one of the directories in the PATH environment variable.

clean remove all files not needed for day-to-day use, that is binaries not in $TAR-

GET_HOME/bin or $TARGET_HOME/lib.bin, object files etc.

-16-

Example:

make install

given as command in a configuration directory will cause compilation of all programs in the directory and

copying of the results to the $TARGET_HOME/bin and $TARGET_HOME/lib.bin directories.

11. Testing

Test sets are available in Pascal, C, Basic and EM assembly:

EM the directory $SRC_HOME/emtest contains a few EM test programs. The EM assembly files in

these tests must be transformed into load files. These tests use the LIN and NOP instructions to

mark the passing of each test. The NOP instruction prints the current line number during the test

phase. Each test notifies its correctness by calling LIN with a unique number followed by a NOP

which prints this line number. The test finishes normally with 0 as the last number printed In all

other cases a bug showed its existence.

Pascal the directory $SRC_HOME/lang/pc/test contains a few Pascal test programs. All these programs

print the number of errors found and a identification of these errors.

We also tested Pascal with the Validation Suite. The Validation Suite is a collection of

more than 200 Pascal programs, designed by Brian Wichmann and Arthur Sale to test Pascal

compilers. We are not allowed to distribute it, but a copy may be requested from

Richard J. Cichelli

A.N.P.A.

1350 Sullivan Trail

P.O. Box 598

Easton, Pennsylvania 18042

USA

C the sub-directories in $SRC_HOME/lang/cem/ctest contain C test programs. The idea behind

these tests is: if there is a program called xx.c, compile it into xx.cem. Run it with standard out-

put to xx.cem.r, compare this file to xx.cem.g, a file containing the ’ideal’ output. Any differ-

ences will point to implementation differences or bugs. Giving the command "run gen" or plain

"run" starts this process. The differences will be presented on standard output. The contents of

the result files depend on the word size, the xx.cem.g files on the distribution are intended for a

32-bit machine.

Basic the directory $SRC_HOME/lang/basic/test contains some forty Basic programs. Not all of these

programs are correct, some have syntactic errors, some simply don’t work. The Makefile in that

directory attempts to compile and run these tests. If it compiles its output is compared to a file

with suffix .g which contains the output to be expected. The make should be started with its stan-

dard input diverted to /dev/null. An example of the output of a make is present in the file Out.std.

12. Documentation

After installation, the manual pages for Amsterdam Compiler Kit can be found in the $TAR-

GET_HOME/man directory. Also, the following documents are provided in the $TARGET_HOME/doc

directory:

toolkit.doc general overview (CACM article)

em.doc description of the EM machine architecture

ack.doc format of machine description files (lib/*/descr)

ansi_C.doc ANSI C implementation description

basic.doc Basic reference manual

pcref.doc Pascal-frontend reference manual

val.doc results of running the Pascal Validation Suite

-17-

crefman.doc C-frontend description

LLgen description of the LL(1) parser generator

peep.doc internal documentation for the peephole optimizer

cg.doc documentation for backend writers and maintainers

regadd.doc addendum to previous document describing register variables

ncg.doc documentation for the newest backends

v7bugs.doc bugs in the V7 system and how to fix them

6500.doc MSC 6500 backend description

i80.doc Intel 8080 backend description

z80.doc Zilog Z80 backend description

m68020.doc Motorola M68000/M68020 backend description

sparc.doc SPARC code expander description

occam.doc occam-frontend description

ego.doc Global Optimizer description

top.doc Target Optimizer description

int.doc description of the EM interpreter written in C

ceg.doc documentation for code-expander writers and maintainers

lint.doc documentation of LINT

m2ref.doc Modula-2 frontend description

install.doc this document

install.pr this document (formatted for a simple line printer)

Use the Makefile to get readable copies.

Good luck.

