
The ACK Pascal Compiler

Aad Geudeke

Fr ans Hofmeester

Dept. of Mathematics and Computer Science

Vrije Universiteit

Amsterdam, The Netherlands

ABSTRACT

This document describes the implementation of a Pascal to EM compiler. The com-

piler is written in C. The lexical analysis is done using a hand-written lexical analyzer.

Semantic analysis makes use of the extended LL(1) parser generator LLgen. Several EM

utility modules are used in the compiler.

1. Introduction

The Pascal front end of the Amsterdam Compiler Kit (ACK) complies with the requirements of the

international standard published by the International Organization for Standardization (ISO) [ISO]. An

informal description, which unfortunately is not conforming to the standard, of the programming language

Pascal is given in [JEN].

The main reason for rewriting the Pascal compiler was that the old Pascal compiler was written in

Pascal itself, and a disadvantage of it was its lack of flexibility. The compiler did not meet the needs of the

current ACK-framework, which makes use of modern parsing techniques and utility modules. In this frame-

work it is, for example, possible to use a fast back end. Such a back end translates directly to object code

[ACK]. Our compiler is written in C and it is designed similar to the current C and Modula-2 compiler of

ACK.

Chapter 2 describes the basic structure of the compiler. Chapter 3 discusses the code generation of

the main Pascal constructs. Chapter 4 covers one of the major components of Pascal, viz. the conformant

array. In Chapter 5 the various compiler options that can be used are enumerated. The extensions to the

standard and the deviations from the standard are listed in Chapter 6 and 7. Chapter 8 presents some ideas

to improve the standard. Chapter 9 gives a short overview of testing the compiler. The major differences

between the old and new compiler can be found in Chapter 10. Suggestions to improve the compiler are

described in Chapter 11. The appendices contain the grammar of Pascal and the changes made to the ACK

Pascal run time library. A translation of a Pascal program to EM code as example is presented.

-2-

2. The compiler

The compiler can be divided roughly into four modules:

• lexical analysis

• syntax analysis

• semantic analysis

• code generation

The four modules are grouped into one pass. The activity of these modules is interleaved during the pass.

The lexical analyzer, some expression handling routines and various datastructures from the Modula-2

compiler contributed to the project.

2.1. Lexical Analysis

The first module of the compiler is the lexical analyzer. In this module, the stream of input characters mak-

ing up the source program is grouped into tokens, as defined in ISO 6.1. The analyzer is hand-written,

because the lexical analyzer generator, which was at our disposal, Lex [LEX], produces much slower ana-

lyzers. A character table, in the file char.c, is created using the program tab which takes as input the file

char.tab. In this table each character is placed into a particular class. The classes, as defined in the file

class.h, represent a set of tokens. The strategy of the analyzer is as follows: the first character of a new

token is used in a multiway branch to eliminate as many candidate tokens as possible. Then the remaining

characters of the token are read. The constant INP_NPUSHBACK, defined in the file input.h, specifies the

maximum number of characters the analyzer looks ahead. The value has to be at least 3, to handle input

sequences such as:

1e+4 (which is a real number)

1e+a (which is the integer 1, followed by the identifier "e", a plus, and the identifier "a")

Another aspect of this module is the insertion and deletion of tokens required by the parser for the recovery

of syntactic errors (see also section 2.2). A generic input module [ACK] is used to avoid the burden of I/O.

2.2. Syntax Analysis

The second module of the compiler is the parser, which is the central part of the compiler. It inv okes the

routines of the other modules. The tokens obtained from the lexical analyzer are grouped into grammatical

phrases. These phrases are stored as parse trees and handed over to the next part. The parser is generated

using LLgen[LL], a tool for generating an efficient recursive descent parser with no backtrack from an

Extended Context Free Syntax.

An error recovery mechanism is generated almost completely automatically. A routine called LLmessage

had to be written, which gives the necessary error messages and deals with the insertion and deletion of

tokens. The routine LLmessage must accept one parameter, whose value is a token number, zero or -1. A

zero parameter indicates that the current token (the one in the external variable LLsymb) is deleted. A -1

parameter indicates that the parser expected end of file, but did not get it. The parser will then skip tokens

until end of file is detected. A parameter that is a token number (a positive parameter) indicates that this

token is to be inserted in front of the token currently in LLsymb. Also, care must be taken, that the token

currently in LLsymb is again returned by the next call to the lexical analyzer, with the proper attributes. So,

the lexical analyzer must have a facility to push back one token.

Calls to the two standard procedures write and writeln can be different from calls to other procedures. The

syntax of a write-parameter is different from the syntax of an actual-parameter. We decided to include

them, together with read and readln, in the grammar. An alternate solution would be to make the syntax of

an actual-parameter identical to the syntax of a write-parameter. Afterwards the parameter has to be

checked to see whether it is used properly or not.

-3-

As the parser is LL(1), it must always be able to determine what to do, based on the last token read

(LLsymb). Unfortunately, this was not the case with the grammar as specified in [ISO]. Two kinds of prob-

lems appeared, viz. the alternation and repetition conflict. The examples given in the following para-

graphs are taken from the grammar.

2.2.1. Alternation conflict

An alternation conflict arises when the parser can not decide which production to choose.

Example:

procedure-declaration : procedure-heading ’;’ directive |

procedure-identification ’;’ procedure-block |

procedure-heading ’;’ procedure-block ;

procedure-heading : procedure identifier [formal-parameter-list]? ;

procedure-identification : procedure procedure-identifier ;

A sentence that starts with the terminal procedure is derived from the three alternative productions. This

conflict can be resolved in two ways: adjusting the grammar, usually some rules are replaced by one rule

and more work has to be done in the semantic analysis; using the LLgen conflict resolver, "%if (C-expres-

sion)", if the C-expression evaluates to non-zero, the production in question is chosen, otherwise one of the

remaining rules is chosen. The grammar rules were rewritten to solve this conflict. The new rules are given

below. For more details see the file declar.g.

procedure-declaration : procedure-heading ’;’ (directive | procedure-block) ;

procedure-heading : procedure identifier [formal-parameter-list]? ;

A special case of an alternation conflict, which is common to many block structured languages, is the "dan-

gling-else" ambiguity.

if-statement : if boolean-expression then statement [else-part]? ;

else-part : else statement ;

The following statement that can be derived from the rules above is ambiguous:

if boolean-expr-1 then if boolean-expr-2 then statement-1 else statement-2

if-statement

then
boolean

expression-1

if statement

if-statement

then
boolean

expression-2

if
statement-1

else
statement-2

if-statement

then
boolean

expression-1

if statement else
statement-2

if-statement

then
boolean

expression-2

if
statement-1

(a) (b)

Tw o parse trees showing the dangling-else ambiguity

According to the standard, else is matched with the nearest preceding unmatched then, i.e. parse tree (a) is valid (ISO 6.8.3.4). This
conflict is statically resolved in LLgen by using "%prefer", which is equivalent in behaviour to "%if(1)".

-4-

2.2.2. Repetition conflict

A repetition conflict arises when the parser can not decide whether to choose a production once more, or

not.

Example:

field-list : [(fixed-part [’;’ variant-part]? | variantpart) [;]?]? ;

fixed-part : record-section [’;’ record-section]* ;

When the parser sees the semicolon, it can not decide whether another record-section or a variant-part fol-

lows. This conflict can be resolved in two ways: adjusting the grammar or using the conflict resolver,

"%while (C-expression)". The grammar rules that deal with this conflict were completely rewritten. For

more details, the reader is referred to the file declar.g.

2.3. Semantic Analysis

The third module of the compiler is the checking of semantic conventions of ISO-Pascal. To check the pro-

gram being parsed, actions have been used in LLgen. An action consists of several C-statements, enclosed

in brackets "{" and "}". In order to facilitate communication between the actions and LLparse, the parsing

routines can be given C-like parameters and local variables. An important part of the semantic analyzer is

the symbol table. This table stores all information concerning identifiers and their definitions. Symbol-table

lookup and hashing is done by a generic namelist module [ACK]. The parser turns each program construc-

tion into a parse tree, which is the major datastructure in the compiler. This parse tree is used to exchange

information between various routines.

2.4. Code Generation

The final module in the compiler is that of code generation. The information stored in the parse trees is

used to generate the EM code [EM]. EM code is generated with the help of a procedural EM-code interface

[ACK]. The use of static exchanges is not desired, since the fast back end can not cope with static code

exchanges, hence the EM pseudoinstruction exc is never generated.

Chapter 3 discusses the code generation in more detail.

2.5. Error Handling

The first three modules have in common that they can detect errors in the Pascal program being compiled.

If this is the case, a proper message is given and some action is performed. If code generation has to be

aborted, an error message is given, otherwise a warning is given. The constant MAXERR_LINE, defined in

the file errout.h, specifies the maximum number of messages given per line. This can be used to avoid long

lists of error messages caused by, for example, the omission of a ’;’. Three kinds of errors can be distin-

guished: the lexical error, the syntactic error, and the semantic error. Examples of these errors are respec-

tively, nested comments, an expression with unbalanced parentheses, and the addition of two characters.

2.6. Memory Allocation and Garbage Collection

The routines st_alloc and st_free provide a mechanism for maintaining free lists of structures, whose first

field is a pointer called next. This field is used to chain free structures together. Each structure, suppose the

tag of the structure is ST, has a free list pointed by h_ST. Associated with this list are the operations:

new_ST(), an allocating mechanism which supplies the space for a new ST struct; and free_ST(), a garbage

collecting mechanism which links the specified structure into the free list.

-5-

3. Translation of Pascal to EM code

A short description of the translation of Pascal constructs to EM code is given in the following paragraphs.

The EM instructions and Pascal terminal symbols are printed in boldface. A sentence in italics is a descrip-

tion of a group of EM (pseudo)instructions.

3.1. Global Variables

For every global variable, a bss block is reserved. To enhance the readability of the EM-code generated, the

variable-identifier is used as a data label to address the block.

3.2. Expressions

Operands are always evaluated, so the execution of

if (p <> nil) and (pˆ.value <> 0) then

might cause a run-time error, if p is equal to nil.

The left-hand operand of a dyadic operator is almost always evaluated before the right-hand side. Peculiar

evaluations exist for the following cases:

the expression: set1 <= set2, is evaluated as follows :

- evaluate set2

- evaluate set1

- compute set2+set1

- test set2 and set2+set1 for equality

the expression: set1 >= set2, is evaluated as follows :

- evaluate set1

- evaluate set2

- compute set1+set2

- test set1 and set1+set2 for equality

Where allowed, according to the standard, constant integral expressions are compile-time evaluated while

an effort is made to report overflow on target machine basis. The integral expressions are evaluated in the

type arith. The size of an arith is assumed to be at least the size of the integer type on the target machine. If

the target machine’s integer size is less than the size of an arith, overflow can be detected at compile-time.

However, the following call to the standard procedure new, new(p, 3+5), is illegal, because the second

parameter is not a constant according to the grammar.

Constant floating expressions are not compile-time evaluated, because the precision on the target machine

and the precision on the machine on which the compiler runs could be different. The boolean expression

(1.0 + 1.0) = 2.0 could evaluate to false.

3.3. Statements

3.3.1. Assignment Statement

PASCAL :

(variable-access | function-identifier) := expression

EM :

evaluate expression

store in variable-access or function-identifier

In case of a function-identifier, a hidden temporary variable is used to keep the function result.

-6-

3.3.2. Goto Statement

PASCAL :

GOTO label

EM :

Tw o cases can be distinguished :

- local goto,

in which a bra is generated.

- non-local goto,

a goto_descriptor is build, containing the ProgramCounter of the instruction

jumped to and an offset in the target procedure frame which contains the

value of the StackPointer after the jump. The code for the jump itself is to

load the address of the goto_descriptor, followed by a push of the LocalBase

of the target procedure and a cal $_gto. A message is generated to indicate

that a procedure or function contains a statement which is the target of a non-

local goto.

3.3.3. If Statement

PASCAL :

IF boolean-expression THEN statement

EM :

evaluation boolean-expression

zeq *exit_label

code statement

exit_label

PASCAL :

IF boolean-expression THEN statement-1 ELSE statement-2

EM :

evaluation boolean-expression

zeq *else_label

code statement-1

bra *exit_label

else_label

code statement-2

exit_label

3.3.4. Repeat Statement

PASCAL :

REPEAT statement-sequence UNTIL boolean-expression

EM :

repeat_label

code statement-sequence

evaluation boolean-expression

zeq *repeat_label

-7-

3.3.5. While Statement

PASCAL :

WHILE boolean-expression DO statement

EM :

while_label

evaluation boolean-expression

zeq *exit_label

code statement

bra *while_label

exit_label

3.3.6. Case Statement

The case-statement is implemented using the csa and csb instructions.

PASCAL :

CASE case-expression OF

case-constant-list-1 : statement-1 ;

case-constant-list-2 : statement-2 ;

.

.

case-constant-list-n : statement-n [;]

END

The csa instruction is used if the range of the case-expression value is dense, i.e.

(upperbound − lowerbound) / number_of_cases

is less than the constant DENSITY, defined in the file density.h.

If the range is sparse, a csb instruction is used.

EM :

evaluation case-expression

bra *l1

c1

code statement-1

bra *exit_label

c2

code statement-2

bra *exit_label

.

.

cn

code statement-n

bra *exit_label

.case_descriptor

generation case_descriptor

l1

lae .case_descriptor

csa size of (case-expression)

exit_label

-8-

3.3.7. For Statement

PASCAL :

FOR control-variable := initial-value (TO | DOWNTO) final-value DO statement

The initial-value and final-value are evaluated at the beginning of the loop. If the values are not constant,

they are evaluated once and stored in a temporary.

EM :

load initial-value

load final-value

bgt exit-label (* DOWNTO : blt exit-label *)

load initial-value

l1

store in control-variable

code statement

load control-variable

dup control-variable

load final-value

beq exit_label

inc control-variable (* DOWNTO : dec control-variable *)

bra *l1

exit_label

Note: testing must be done before incrementing(decrementing) the control-variable,

because wraparound could occur, which could lead to an infinite loop.

3.3.8. With Statement

PASCAL :

WITH record-variable-list DO statement

The statement

WITH r
1
, r

2
, ..., r

n
DO statement

is equivalent to

WITH r
1

DO

WITH r
2

DO

...

WITH r
n

DO statement

The translation of

WITH r
1

DO statement

is

push address of r
1

store address in temporary

code statement

An occurrence of a field is translated into:

load temporary

add field-offset

-9-

3.4. Procedure and Function Calls

In general, the call

p(a
1
, a

2
,, a

n
)

is translated into the sequence:

evaluate a
n

.

.

evaluate a
2

evaluate a
1

push localbase

cal $p

pop parameters

i.e. the order of evaluation and binding of the actual-parameters is from right to left. In general, a copy of

the actual-parameter is made when the formal-parameter is a value-parameter. If the formal-parameter is a

variable-parameter, a pointer to the actual-parameter is pushed.

In case of a function call, a lfr is generated, which pushes the function result on top of the stack.

3.5. Register Messages

A register message can be generated to indicate that a local variable is never referenced indirectly. This

implies that a register can be used for a variable. We distinguish the following classes, given in decreasing

priority:

• control-variable and final-value of a for-statement

to speed up testing, and execution of the body of the for-statement

• record-variable of a with-statement

to improve the field selection of a record

• remaining local variables and parameters

3.6. Compile-time optimizations

The only optimization that is performed is the evaluation of constant integral expressions. The optimization

of constructs like

if false then statement,

is left to either the peephole optimizer, or a global optimizer.

4. Conformant Arrays

A fifth kind of parameter, besides the value, variable, procedure, and function parameter, is the conformant

array parameter (ISO 6.6.3.7). This parameter, undoubtedly the major addition to Pascal from the compiler

writer’s point of view, has been implemented. With this kind of parameter, the required bounds of the

index-type of an actual parameter are not fixed, but are restricted to a specified range of values. Two types

of conformant array parameters can be distinguished: variable conformant array parameters and value con-

formant array parameters.

-10-

4.1. Variable conformant array parameters

The treatment of variable conformant array parameters is comparable with the normal variable parameter.

Both have in common that the parameter mechanism used is call by reference.

An example is:

to sort variable length arrays of integers, the following Pascal procedure could be used:

procedure bubblesort(var A : array[low..high : integer] of integer);

var i, j : integer;

begin

for j := high - 1 downto low do

for i := low to j do

if A[i+1] < A[i] then interchange A[i] and A[i+1]

end;

For every actual parameter, the base address of the array is pushed on the stack and for every index-type-

specification, exactly one array descriptor is pushed.

4.2. Value conformant array parameters

The treatment of value conformant array parameters is more complex than its variable counterpart.

An example is:

an unpacked array of characters could be printed as a string with the following program part:

procedure WriteAsString(A : array[low..high : integer] of char);

var i : integer;

begin

for i := low to high do write(A[i]);

end;

The calling procedure pushes the base address of the actual parameter and the array descriptors belonging

to it on the stack. Subsequently the procedure using the conformant array parameter is called. Because it is

a call by value, the called procedure has to create a copy of the actual parameter. This implies that the call-

ing procedure knows how much space on the stack must be reserved for the parameters. If the actual-

parameter is a conformant array, the called procedure keeps track of the size of the activation record.

Hence the restrictions on the use of value conformant array parameters, as specified in ISO 6.6.3.7.2, are

dropped.

A description of the EM code generated by the compiler is:

load the stack adjustment sofar

load base address of array parameter

compute the size in bytes of the array

add this size to the stack adjustment

copy the array

remember the new address of the array

5. Compiler options

There are some options available to control the behaviour of the compiler. Two types of options can

be distinguished: compile-time options and run-time options.

-11-

5.1. Compile time options

There are some options that can be set when the compiler is installed. Those options can be found in the

file Parameters. To set a parameter just modify its definition in the file Parameters. The shell script in the

file make.hfiles creates for each parameter a separate .h file. This mechanism is derived from the C com-

piler in ACK.

IDFSIZE

The maximum number of characters that are significant in an identifier. This value has to be at least

the value of MINIDFSIZE, defined in the file options.c. A compile-time check is included to see if

the value of MINIDFSIZE is legal. The compiler will not recognize some keywords if IDFSIZE is

too small.

ISTRSIZE, RSTRSIZE

The lexical analyzer uses these two values for the allocation of memory needed to store a string.

ISTRSIZE is the initial number of bytes allocated. RSTRSIZE is the step size used for enlarging

the memory needed.

NUMSIZE

The maximum length of a numeric constant recognized by the lexical analyzer. It is an error if this

length is exceeded.

ERROUT, MAXERR_LINE

Used for error messages. ERROUT defines the file on which the messages are written. MAX-

ERR_LINE is the maximum number of error messages given per line.

SZ_CHAR, AL_CHAR, etc

The default values of the target machine sizes and alignments. The values can be overruled with the

−V option.

MAXSIZE

This value must be set to the maximum of the values of the target machine sizes. This parameter is

used in overflow detection (see also section 3.2).

DENSITY

This parameter is used to decide what EM instruction has to be generated for a case-statement. If

the range of the index value is sparse, i.e.

(upperbound - lowerbound) / number_of_cases

is more than some threshold (DENSITY) the csb instruction is chosen. If the range is dense a jump

table is generated (csa). This uses more space. Reasonable values are 2, 3 or 4.

Higher values might also be reasonable on machines, which have lots of address space and memory

(see also section 3.3.3).

INP_READ_IN_ONE

Used by the generic input module. It can either be defined or not defined. Defining it has the effect

that files will be read completely into memory using only one read-system call. This should be used

only on machines with lots of memory.

-12-

DEBUG

If this parameter is defined some built-in compiler-debugging tools can be used:

• only lexical analyzing is done, if the −l option is given.

• if the −I option is turned on, the allocated number of structures is printed.

• the routine debug can be used to print miscellaneous information.

• the routine PrNode prints a tree of nodes.

• the routine DumpType prints information about a type structure.

• the macro DO_DEBUG(x,y) defined as ((x) && (y)) can be used to perform

several actions.

5.2. Run time options

The run time options can be given in the command line when the compiler is called.

They all have the form: −<character>

Depending on the option, a character string has to be specified. The following options are currently avail-

able:

−C The lower case and upper case letters are treated different (ISO 6.1.1).

−u The character ’_’ is treated like a letter, so it is allowed to use the underscore in iden-

tifiers.

Note: identifiers starting with an underscore may cause problems, because

most identifiers in library routines start with an underscore.

−n This option suppresses the generation of register messages.

−r With this option rangechecks are generated where necessary.

−L Do not generate EM lin and fil instructions. These instructions are used only for pro-

filing.

−M<number> Set the number of characters that are significant in an identifier to <number>. The

maximum significant identifier length depends on the constant IDFSIZE, defined in

idfsize.h.

−i<number> With this flag the setsize for a set of integers can be changed. The number must be

the number of bits per set. Default value : (#bits in a word) − 1

−w Suppress warning messages (see also section 2.5).

−V[[w|i|f|p|S][size]?[.alignment]?]*

Option to set the object sizes and alignments on the target machine dynamically. The

objects that can be manipulated are:

w word

i integer

f float

p pointer

S structure

In case of a structure, size is discarded and the alignment is the initial alignment of

the structure. The effective alignment is the least common multiple of alignment and

the alignment of its members. This option has been implemented so that the compiler

can be used as cross compiler.

-13-

6. Extensions to Pascal as specified by ISO 7185

ISO 6.1.3: The underscore is treated as a letter when the −u option is turned on (see also section 5.2).

This is implemented to be compatible with Pascal-VU and can be used in identifiers to

increase readability.

ISO 6.1.4: The directive extern can be used in a procedure-declaration or function-declaration to

specify that the procedure-block or function-block corresponding to that declaration is

external to the program-block. This can be used in conjunction with library routines.

ISO 6.1.9: An alternative representation for the following tokens and delimiting characters is recog-

nized:

token alternative token

ˆ @

[(.

] .)

delimiting character alternative delimiting pair of characters

{ (*

} *)

ISO 6.6.3.7.2: A conformant array parameter can be passed as value conformant array parameter without

the restrictions imposed by the standard. The compiler gives a warning. This is imple-

mented to keep the parameter mechanism orthogonal (see also Chapter 4).

ISO 6.9.3.1: If the value of the argument TotalWidth of the required procedure write is zero or negative,

no characters are written for character, string or boolean type arguments. If the value of

the argument Fr acDigits of the required procedure write is zero or negative, the fraction

and ’.’ character are suppressed for fixed-point arguments.

7. Deviations from the standard

The compiler deviates from the ISO 7185 standard with respect to the following clauses:

ISO 6.1.3: Identifiers may be of any length and all characters of an identifier shall be significant in

distinguishing between them.

The constant IDFSIZE, defined in the file idfsize.h, determines the (maximum)

significant length of an identifier. It can be set at run time with the −M option (see

also section on compiler options).

ISO 6.1.8: There shall be at least one separator between any pair of consecutive tokens made up of

identifiers, word-symbols, labels or unsigned-numbers.

A token separator is not needed when a number is followed by an identifier or a

word-symbol. For example the input sequence, 2then, is recognized as the integer

2 followed by the keyword then.

ISO 6.2.1: The label-declaration-part shall specify all labels that prefix a statement in the correspond-

ing statement-part.

The compiler generates a warning if a label is declared but never defined.

-14-

ISO 6.2.2: The scope of identifiers and labels should start at the beginning of the block in which

these identifiers or labels are declared.

The compiler, as most other one pass compilers deviates in this respect, because

the scope of variables and labels start at their defining-point.

program deviates;

const

x = 3;

procedure p;

const

y = x;

x = true;

begin end;

begin

end.

In procedure p, the constant y has the integer value 3. This program does not con-

form to the standard. In [SAL] a simple algorithm is described for enforcing the

scope rules, it involves numbering all scopes encoutered in the program in order of

their opening, and recording in each identifier table entry the number of the latest

scope in which it is used.

Note: The compiler does not deviate from the standard in the following program:

program conforms;

type

x = real;

procedure p;

type

y = ˆx;

x = boolean;

var

p : y;

begin end;

begin

end.

In procedure p, the variable p is a pointer to boolean.

ISO 6.4.3.2: The standard specifies that any ordinal type is allowed as index-type.

The required type integer is not allowed as index-type, i.e.

ARRAY [integer] OF <component-type> is not permitted.

This could be implemented, but this might cause problems on machines with a

small memory.

ISO 6.4.3.3: The type possessed by the variant-selector, called the tag-type, must be an ordinal type, so

the integer type is permitted. The values denoted by all case-constants shall be distinct

and the set thereof shall be equal to the set of values specified by the tag-type.

Because it is impracticable to enumerate all integers as case-constants, the integer

type is not permitted as tag-type. It would not make a great difference to allow it

as tagtype.

ISO 6.8.3.9: The standard specifies that the control-variable of a for-statement is not allowed to be

modified while executing the loop.

Violation of this rule is not detected. An algorithm to implement this rule can be

found in [PCV].

-15-

8. Hints to change the standard

We encoutered some difficulties when the compiler was developed. In this chapter some hints are presented

to change the standard, which would make the implementation of the compiler less difficult. The semantics

of Pascal would not be altered by these adaptions.

− Some minor changes in the grammar of Pascal from the user’s point of view, but which make the writing

of an LL(1) parser considerably easier, could be:

field-list : [(fixed-part [variant-part] | variant-part)] .

fixed-part : record-section ; { record-section ; } .

variant-part : case variant-selector of variant ; { variant ; } .

case-statement : case case-index of case-list-element ; { case-list-element ; } end .

− To ease the semantic checking on sets, the principle of qualified sets could be used, every set-constructor

must be preceeded by its type-identifier:

set-constructor : type-identifier [[member-designator { , member-designator }]] .

Example:

t1 = set of 1..5;

t2 = set of integer;

The type of [3, 5] would be ambiguous, but the type of t1[3, 5] not.

− Another problem arises from the fact that a function name can appear in three distinct ’use’ contexts:

function call, assignment of function result and as function parameter.

Example:

program function_name;

function p(x : integer; function y : integer) : integer;

begin .. end;

function f : integer;

begin

f := p(f, f); (*)

end;

begin .. end.

A possible solution in case of a call (also a procedure call) would be to make the (possibly empty) actual-

parameter-list mandatory. The assignment of the function result could be changed in a return statement.

Though this would change the semantics of the program slightly.

The above statement (*) would look like this: return p(f(), f);

− Another extension to the standard could be the implementation of an otherwise clause in a case-state-

ment. This would behave exactly like the default clause in a switch-statement in C.

-16-

9. Testing the compiler

Although it is practically impossible to prove the correctness of a compiler, a systematic method of testing

the compiler is used to increase the confidence that it will work satisfactorily in practice. The first step was

to see if the lexical analysis was performed correctly. For this purpose, the routine LexScan() was used (see

also the −l option). Next we tested the parser generated by LLgen, to see whether correct Pascal programs

were accepted and garbage was dealed with gracefully. The biggest test involved was the validation of the

semantic analysis. Simultaneously we tested the code generation. First some small Pascal test programs

were translated and executed. When these programs work correctly, the Pascal validation suite and a large

set of Pascal test programs were compiled to see whether they behaved in the manner the standard specifies.

For more details about the Pascal validation suite, the reader is referred to [PCV].

10. Comparison with the Pascal-VU compiler

In this chapter, the differences with the Pascal-VU compiler [IM2] are listed. The points enumerated below

can be used as improvements to the compiler (see also Chapter 11).

10.1. Deviations

- large labels

only labels in the closed interval 0..9999 are allowed, as opposed to the Pascal-VU compiler. The

Pascal-VU compiler allows every unsigned integer as label.

- goto

the new compiler conforms to the standard as opposed to the old one. The following program,

which contains an illegal jump to label 1, is accepted by the Pascal-VU compiler.

program illegal_goto(output);

label 1;

var i : integer;

begin

goto 1;

for i := 1 to 10 do

begin

1 : writeln(i);

end;

end.

This program is rejected by the new compiler.

10.2. Extensions

The extensions implemented by the Pascal-VU compiler are listed in Chapter 5 of [IM2].

- separate compilation

the new compiler only accepts programs, not modules.

- assertions

not implemented.

- additional procedures

the procedures halt, mark and release are not available.

-17-

- UNIX™ interfacing

the −c option is not implemented.

- double length integers

integer size can be set with the −V option, so the additional type long is not implemented.

10.3. Compiler options

The options implemented by the Pascal-VU compiler are listed in Chapter 7 of [IM2].

The construction "{$....}" is not recognized.

The options: a, c, d, s and t are not available.

The −l option has been changed into the −L option.

The size of reals can be set with the −V option.

11. Improvements to the compiler

In consideration of portability, a restricted option could be implemented. Under this option, the extensions

and warnings should be considered as errors.

The restrictions imposed by the standard on the control variable of a for-statment should be implemented

(ISO 6.8.3.9).

To check whether a function returns a valid result, the following algorithm could be used. When a function

is entered a hidden temporary variable of type boolean is created. This variable is initialized with the value

false. The variable is set to true, when an assignment to the function name occurs. On exit of the function

a test is performed on the variable. If the value of the variable is false, a run-time error occurs.

Note: The check has to be done run-time.

The undefined value should be implemented. A problem arises with local variables, for which space on the

stack is allocated. A possible solution would be to generate code for the initialization of the local variables

with the undefined value at the beginning of a procedure or function.

The implementation for the global variables is easy, because bss blocks are used.

Closely related to the last point is the generation of warnings when variables are never used or assigned.

This is not yet implemented.

The error messages could specify more details about the errors occurred, if some additional testing is done.

™ UNIX is a Trademark of Bell Laboratories.

-18-

Every time the compiler detects sets with different base-types, a warning is given. Sometimes this is super-

fluous.

program sets(output);

type

week = (sunday, monday, tuesday, wednesday, thursday, friday, saturday);

workweek = monday..friday;

var

s : set of workweek;

day : week;

begin

day := monday;

s := [day]; (* warning *)

day := saturday;

s := [day]; (* warning *)

end.

The new compiler gives two warnings, the first one is redundant.

A nasty point in the compiler is the way the procedures read, readln, write and writeln are handled (see also

section 2.2). They hav e been added to the grammar. This implies that they can not be redefined as opposed

to the other required procedures and functions. They should be removed from the grammar altogether. This

could imply that more semantic checks have to be performed.

No effort is made to detect possible run-time errors during compilation.

E.g. a : array[1..10] of something, and the array selection a[11] would occur.

Some assistance to implement the improvements mentioned above, can be obtained from [PCV].

12. History & Acknowledgements

History

The purpose of this project was to make a Pascal compiler which should satisfy the conditions of the ISO

standard. The task was considerably simplified, because parts of the Modula-2 compiler were used. This

gave the advantage of increasing the uniformity of the compilers in ACK.

While developing the compiler, a number of errors were detected in the Modula-2 compiler, EM utility

modules and the old Pascal compiler.

Acknowledgements

During the development of the compiler, valuable support was received from a number of persons. In this

regard we owe a debt of gratitude to Fred van Beek, Casper Capel, Rob Dekker, Frank Engel, José

Gouweleeuw and Sonja Keijzer (Jut and Jul !!), Herold Kroon, Martin van Nieuwkerk, Sjaak Schouten,

Eric Valk, and Didan Westra.

Special thanks are reserved for Dick Grune, who introduced us to the field of Compiler Design and who

helped testing the compiler. Ceriel Jacobs, who developed LLgen and the Modula-2 compiler of ACK.

Finally we would like to thank Erik Baalbergen, who had the supervision on this entire project and gav e us

many valuable suggestions.

-19-

13. References

[ISO] ISO 7185 Specification for Computer Programming Language Pascal, 1982, Acornsoft ISO-PAS-

CAL, 1984

[EM] A.S. Tanenbaum, H. van Staveren, E.G. Keizer and J.W. Stevenson, Description Of A Machine

Architecture for use with Block Structured Languages, Informatica Rapport IR-81, Vrije Univer-

siteit, Amsterdam, 1983

[C] B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, 1978

[LL] C.J.H. Jacobs, Some Topics in Parser Generation, Informatica Rapport IR-105, Vrije Universiteit,

Amsterdam, October 1985

[IM2] J.W. Stevenson, Pascal-VU Reference Manual and Unix Manual Pages, Informatica Manual

IM-2, Vrije Universiteit, Amsterdam, 1980

[JEN] K. Jensen and N.Wirth, Pascal User Manual and Report, Springer-Verlag, 1978

[ACK] ACK Manual Pages: ALLOC, ASSERT, EM_CODE, EM_MES, IDF, INPUT, PRINT, STRING,

SYSTEM

[AHO] A.V. Aho, R. Sethi and J.D. Ullman, Compiler Principles, Techniques, and Tools, Addison Wes-

ley, 1985

[LEX] M.E. Lesk, Lex - A Lexical Analyser Generator, Comp. Sci. Tech. Rep. No. 39, Bell Laborato-

ries, Murray Hill, New Jersey, October 1975

[PCV] B.A. Wichmann and Z.J. Ciechanowicz, Pascal Compiler Validation, John Wiley & Sons, 1983

[SAL] A.H.J. Sale, A Note on Scope, One-Pass Compilers and Pascal, Australian Communications, 1, 1,

80-82, 1979

Appendix A: ISO-PASCAL grammar

A.1 Lexical tokens

The syntax describes the formation of lexical tokens from characters and the separation of these tokens, and

therefore does not adhere to the same rules as the syntax in A.2.

The lexical tokens used to construct Pascal programs shall be classified into special-symbols, identifiers,

directives, unsigned-numbers, labels and character-strings. The representation of any letter (upper-case or

lower-case, differences of font, etc) occurring anywhere outside of a character-string shall be insignificant

in that occurrence to the meaning of the program.

letter = a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z .

-20-

digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .

The special symbols are tokens having special meanings and shall be used to delimit the syntactic units of

the language.

special-symbol = + | − | * | / | = | < | > | [|] | . | , | : | ; | ˆ | (|) | <> | <= | >= | := | .. | word-

symbol .

word-symbol = and | array | begin | case | const | div | do | downto | else | end | file | for | function |

goto | if | in | label | mod | nil | not | of | or | packed | procedure | program | record |

repeat | set | then | to | type | until | var | while | with .

Identifiers may be of any length. All characters of an identifier shall be significant. No identifier shall have

the same spelling as any word-symbol.

identifier = letter { letter | digit } .

A directive shall only occur in a procedure-declaration or function-declaration. No directive shall have the

same spelling as any word-symbol.

directive = letter {letter | digit} .

Numbers are given in decimal notation.

unsigned-integer = digit-sequence .

unsigned-real = unsigned-integer . fractional-part [e scale-factor] | unsigned-integer e scale-factor .

digit-sequence = digit {digit} .

fractional-part = digit-sequence .

scale-factor = signed-integer .

signed-integer = [sign] unsigned-integer .

sign = + | − .

-21-

Labels shall be digit-sequences and shall be distinguished by their apparent integral values and shall be in

the closed interval 0 to 9999.

label = digit-sequence .

A character-string containing a single string-element shall denote a value of the required char-type. Each

string-character shall denote an implementation- defined value of the required char-type.

character-string = ’ string-element { string-element } ’ .

string-element = apostrophe-image | string-character .

apostrophe-image = ’’ .

string-character = All 7-bits ASCII characters except linefeed (10), vertical tab (11), and new page (12).

The construct:

{ any-sequence-of-characters-and-separations-of-lines- not-containing-right-brace }

shall be a comment if the "{" does not occur within a character-string or within a comment. The

substitution of a space for a comment shall not alter the meaning of a program.

Comments, spaces (except in character-strings), and the separation of consecutive lines shall be considered

to be token separators. Zero or more token separators may occur between any two consecutive tokens, or

before the first token of a program text. No separators shall occur within tokens.

-22-

A.2 Grammar

The non-terminal symbol program is the start symbol of the grammar.

actual-parameter : expression | variable-access | procedure-identifier | function-identifier .

actual-parameter-list : (actual-parameter { , actual-parameter }) .

adding-operator : + | − | or .

array-type : array [index-type { , index-type }] of component-type .

array-variable : variable-access .

assignment-statement : (variable-access | function-identifier) := expression .

base-type : ordinal-type .

block : label-declaration-part constant-definition-part type-definition-part variable-declaration-part

procedure-and-function-declaration-part statement-part .

Boolean-expression : expression .

bound-identifier : identifier .

buffer-variable : file-variable ˆ .

case-constant : constant .

case-constant-list : case-constant { , case-constant } .

case-index : expression .

case-list-element : case-constant-list : statement .

case-statement : case case-index of case-list-element { ; case-list-element } [;] end .

component-type : type-denoter .

component-variable : indexed-variable | field-designator .

compound-statement : begin statement-sequence end .

conditional-statement : if-statement | case-statement .

conformant-array-parameter-specification : value-conformant-array-specification |

variable-conformant-array-specification .

conformant-array-schema : packed-conformant-array-schema | unpacked-conformant-array-schema .

constant : [sign] (unsigned-number | constant-identifier) | character-string .

constant-definition : identifier = constant .

constant-definition-part : [const constant-definition ; { constant-definition ; }] .

constant-identifier : identifier .

control-variable : entire-variable .

domain-type : type-identifier .

else-part : else statement .

empty-statement : .

entire-variable : variable-identifier .

enumerated-type : (identifier-list) .

expression : simple-expression [relational-operator simple-expression] .

-23-

factor : variable-access | unsigned-constant | bound-identifier | function-designator | set-constructor |

(expression) | not factor .

field-designator : record-variable . field-specifier | field-designator-identifier .

field-designator-identifier : identifier .

field-identifier : identifier .

field-list : [(fixed-part [; variant-part] | variant-part) [;]] .

field-specifier : field-identifier .

file-type : file of component-type .

file-variable : variable-access .

final-value : expression .

fixed-part : record-section { ; record-section } .

for-statement : for control-variable := initial-value (to | downto) final-value do statement .

formal-parameter-list : (formal-parameter-section { ; formal-parameter-section }) .

formal-parameter-section : value-parameter-specification | variable-parameter-specification |

procedural-parameter-specification | functional-parameter-specification |

conformant-array-parameter-specification .

function-block : block .

function-declaration : function-heading ; directive | function-identification ; function-block |

function-heading ; function-block .

function-designator : function-identifier [actual-parameter-list] .

function-heading : function identifier [formal-parameter-list] : result-type .

function-identification : function function-identifier .

function-identifier : identifier .

functional-parameter-specification : function-heading .

goto-statement : goto label .

identified-variable : pointer-variable ˆ .

identifier-list : identifier { , identifier } .

if-statement : if Boolean-expression then statement [else-part] .

index-expression : expression .

index-type : ordinal-type .

index-type-specification : identifier .. identifier : ordinal-type-identifier .

indexed-variable : array-variable [index-expression { , index-expression }] .

initial-value : expression .

label : digit-sequence .

label-declaration-part : [label label { , label } ;] .

member-designator : expression [.. expression] .

multiplying-operator : * | / | div | mod | and .

-24-

new-ordinal-type : enumerated-type | subrange-type .

new-pointer-type : ˆ domain-type .

new-structured-type : [packed] unpacked-structured-type .

new-type : new-ordinal-type | new-structured-type | new-pointer-type .

ordinal-type : new-ordinal-type | ordinal-type-identifier .

ordinal-type-identifier : type-identifier .

packed-conformant-array-schema : packed array [index-type-specification] of type-identifier .

pointer-type-identifier : type-identifier .

pointer-variable : variable-access .

procedural-parameter-specification : procedure-heading .

procedure-and-function-declaration-part : { (procedure-declaration | function-declaration) ; } .

procedure-block : block .

procedure-declaration : procedure-heading ; directive | procedure-identification ; procedure-block |

procedure-heading ; procedure-block .

procedure-heading : procedure identifier [formal-parameter-list] .

procedure-identification : procedure procedure-identifier .

procedure-identifier : identifier .

procedure-statement : procedure-identifier ([actual-parameter-list] | read-parameter-list | readln-parameter-list |

write-parameter-list | writeln-parameter-list) .

program : program-heading ; program-block . .

program-block : block .

program-heading : program identifier [(program-parameters)] .

program-parameters : identifier-list .

read-parameter-list : ([file-variable ,] variable-access { , variable-access }) .

readln-parameter-list : [((file-variable | variable-access) { , variable-access })] .

record-section : identifier-list : type-denoter .

record-type : record field-list end .

record-variable : variable-access .

record-variable-list : record-variable { , record-variable } .

relational-operator : = | <> | < | > | <= | >= | in .

repeat-statement : repeat statement-sequence until Boolean-expression .

repetitive-statement : repeat-statement | while-statement | for-statement .

result-type : simple-type-identifier | pointer-type-identifier .

set-constructor : [[member-designator { , member-designator }]] .

set-type : set of base-type .

sign : + | − .

simple-expression : [sign] term { adding-operator term } .

simple-statement : empty-statement | assignment-statement | procedure-statement | goto-statement .

simple-type-identifier : type-identifier .

-25-

statement : [label :] (simple-statement | structured-statement) .

statement-part : compound-statement .

statement-sequence : statement { ; statement } .

structured-statement : compound-statement | conditional-statement | repetitive-statement | with-statement .

subrange-type : constant .. constant .

tag-field : identifier .

tag-type : ordinal-type-identifier .

term : factor { multiplying-operator factor } .

type-definition : identifier = type-denoter .

type-definition-part : [type type-definition ; { type-definition ; }] .

type-denoter : type-identifier | new-type .

type-identifier : identifier .

unpacked-conformant-array-schema : array [index-type-specification { ; index-type-specification }] of

(type-identifier | conformant-array-schema) .

unpacked-structured-type : array-type | record-type | set-type | file-type .

unsigned-constant : unsigned-number | character-string | constant-identifier | nil .

unsigned-number : unsigned-integer | unsigned-real .

value-conformant-array-specification : identifier-list : conformant-array-schema .

value-parameter-specification : identifier-list : type-identifier .

variable-access : entire-variable | component-variable | identified-variable | buffer-variable .

variable-conformant-array-specification : var identifier-list : conformant-array-schema .

variable-declaration : identifier-list : type-denoter .

variable-declaration-part : [var variable-declaration ; { variable-declaration ; }] .

variable-identifier : identifier .

variable-parameter-specification : var identifier-list : type-identifier .

variant : case-constant-list : (field-list) .

variant-part : case variant-selector of variant { ; variant } .

variant-selector : [tag-field :] tag-type .

while-statement : while Boolean-expression do statement .

with-statement : with record-variable-list do statement .

write-parameter : expression [: expression [: expression]] .

write-parameter-list : ([file-variable ,] write-parameter { , write-parameter }) .

writeln-parameter-list : [((file-variable | write-parameter) { , write-parameter })] .

-26-

Appendix B: Changes to the run time library

Some minor changes in the run time library have been made concerning the external files (i.e. program

arguments). The old compiler reserved space for the file structures of the external files in one hol block. In

the new compiler, every file structure is placed in a separate bss block. This implies that the arguments with

which _ini is called are slightly different. The second argument was the base of the hol block to relocate the

buffer addresses, it is changed into an integer denoting the size of the array passed as third argument. The

third argument was a pointer to an array of integers containing the description of external files, this

argument is changed into a pointer to an array of pointers to file structures.

The differences in the generated EM code for an arbitrary Pascal program are listed below (only the

relevant parts are shown):

program external_files(output,f);

var

f : file of some-type;

.

.

end.

EM code generated by Pascal-VU:

.

.

hol 1088,-2147483648,0 ; space belonging to file structures of the program arguments

.

.

.

.2

con 3, -1, 544, 0 ; description of external files

lxl 0

lae .2

lae 0 ; base of hol block, to relocate buffer addresses

lxa 0

cal $_ini

asp 16

.

.

EM code generated by our compiler:

.

.

f

bss 540,0,0 ; space belonging to file structure of program argument f

output

bss 540,0,0 ; space belonging to file structure of standard output

.

.

.

.2

con 0U4, output, f ; the absence of standard input is denoted by a null pointer

lxl 0

lae .2

loc 3 ; denotes the size of the array of pointers to file structures

lxa 0

cal $_ini

asp 16

.

.

The following files in the run time library have been changed:

pc_file.h

-27-

hlt.c

ini.c

opn.c

pentry.c

pexit.c

-28-

Appendix C: An example

1 program factorials(input, output);

2 { This program prints factorials }

3

4 const

5 FAC1 = 1;

6 var

7 i : integer;

8

9 function factorial(n : integer) : integer;

10 begin

11 if n = FAC1 then

12 factorial := FAC1

13 else

14 factorial := n * factorial(n-1);

15 end;

16

17 begin

18 write(’Give a number : ’);

19 readln(i);

20 if i < 1 then

21 writeln(’No factorial’)

22 else

23 writeln(factorial(i):1);

24 end.

-29-

mes 2,4,4 loc 16

.1 cal $_wrs

rom ’factorials.p\000’ asp 12

i lin 19

bss 4,0,0 lae input

output cal $_rdi

bss 540,0,0 asp 4

input lfr 4

bss 540,0,0 ste i

exp $factorial lae input

pro $factorial, ? cal $_rln

mes 9,4 asp 4

lin 11 lin 20

lol 0 loe i

loc 1 loc 1

cmi 4 cmi 4

teq tlt

zeq *1 zeq *1

lin 12 lin 21

loc 1 .4

stl -4 rom ’No factorial’

bra *2 lae output

1 lae .4

lin 14 loc 12

lol 0 cal $_wrs

lol 0 asp 12

loc 1 lae output

sbi 4 cal $_wln

cal $factorial asp 4

asp 4 bra *2

lfr 4 1

mli 4 lin 23

stl -4 lae output

2 loe i

lin 15 cal $factorial

mes 3,0,4,0,0 asp 4

lol -4 lfr 4

ret 4 loc 1

end 4 cal $_wsi

exp $m_a_i_n asp 12

pro $m_a_i_n, ? lae output

mes 9,0 cal $_wln

fil .1 asp 4

.2 2

con input, output lin 24

lxl 0 loc 0

lae .2 cal $_hlt

loc 2 end 0

lxa 0 mes 4,24,’factorials.p\000’

cal $_ini

asp 16

lin 18

.3

rom ’Give a number : ’

lae output

lae .3

