
Ack Description File

Reference Manual

Ed Keizer

Vakgroep Informatica

Vrije Universiteit

Amsterdam

1. Introduction

The program ack(I) internally maintains a table of possible transformations and a table of string vari-

ables. The transformation table contains one entry for each possible transformation of a file. Which trans-

formations are used depends on the suffix of the source file. Each transformation table entry tells which

input suffixes are allowed and what suffix/name the output file has. When the output file does not already

satisfy the request of the user (indicated with the flag −c.suffix), the table is scanned starting with the next

transformation in the table for another transformation that has as input suffix the output suffix of the previ-

ous transformation. A few special transformations are recognized, among them is the combiner, which is a

program combining several files into one. When no stop suffix was specified (flag −c.suffix) ack stops after

executing the combiner with as arguments the − possibly transformed − input files and libraries. Ack will

only perform the transformations in the order in which they are presented in the table.

The string variables are used while creating the argument list and program call name for a particular trans-

formation.

2. Which descriptions are used

Ack always uses two description files: one to define the front-end transformations and one for the

machine dependent back-end transformations. Each description has a name. First the way of determining

the name of the descriptions needed is described.

When the shell environment variable ACKFE is set ack uses that to determine the front-end table

name, otherwise it uses fe.

The way the backend table name is determined is more convoluted.

First, when the last filename in the program call name is not one of ack or the front-end call-names, this

filename is used as the backend description name. Second, when the −m is present the −m is chopped of

this flag and the rest is used as the backend description name. Third, when both failed the shell environ-

ment variable ACKM is used. Last, when also ACKM was not present the default backend is used, deter-

mined by the definition of ACKM in h/local.h. The presence and value of the definition of ACKM is deter-

mined at compile time of ack.

Now, we hav e the names, but that is only the first step. Ack stores a few descriptions at compile time.

This descriptions are simply files read in at compile time. At the moment of writing this document, the

descriptions included are: pdp, fe, i86, m68k2, vax2 and int. The name of a description is first searched for

internally, then in lib/descr/name, then in lib/name/descr, and finally in the current directory of the user.

-2-

3. Using the description file

Before starting on a narrative of the description file, the introduction of a few terms is necessary. All

these terms are used to describe the scanning of zero terminated strings, thereby producing another string or

sequence of strings.

Backslashing

All characters preceded by \ are modified to prevent recognition at further scanning. This modifica-

tion is undone before a string is passed to the outside world as argument or message. When reading

the description files the sequences \\, \# and \<newline> have a special meaning. \\ translates to a sin-

gle \, \# translates to a single # that is not recognized as the start of comment, but can be used in

recognition and finally, \<newline> translates to nothing at all, thereby allowing continuation lines.

Variable replacement

The scan recognizes the sequences {{, {NAME} and {NAME?text} Where NAME can be any com-

bination if characters excluding ? and } and text may be anything excluding }. (\} is allowed of

course) The first sequence produces an unescaped single {. The second produces the contents of the

NAME, definitions are done by ack and in description files. When the NAME is not defined an error

message is produced on the diagnostic output. The last sequence produces the contents of NAME if

it is defined and text otherwise.

Expression replacement

Syntax: (suffix sequence:suffix sequence=text)

Example: (.c.p.e:.e=tail_em)

If the two suffix sequences have a common member − .e in this case − the text is produced. When no

common member is present the empty string is produced. Thus the example given is a constant

expression. Normally, one of the suffix sequences is produced by variable replacement. Ack sets

three variables while performing the diverse transformations: HEAD, TAIL and RTS. All three vari-

ables depend on the properties rts and need from the transformations used. Whenever a transforma-

tion is used for the first time, the text following the need is appended to both the HEAD and TAIL

variable. The value of the variable RTS is determined by the first transformation used with a rts

property.

Tw o runtime flags have effect on the value of one or more of these variables. The flag −.suffix has

the same effect on these three variables as if a file with that suffix was included in the argument list

and had to be translated. The flag −r.suffix only has that effect on the TAIL variable. The program

call names acc and cc have the effect of an automatic −.c flag. Apc and pc have the effect of an auto-

matic −.p flag.

Line splitting

The string is transformed into a sequence of strings by replacing the blank space by string separators

(nulls).

IO replacement

The > in the string is replaced by the output file name. The < in the string is replaced by the input file

name. When multiple input files are present the string is duplicated for each input file name.

Each description is a sequence of variable definitions followed by a sequence of transformation definitions.

Variable definitions use a line each, transformations definitions consist of a sequence of lines. Empty lines

are discarded, as are lines with nothing but comment. Comment is started by a # character, and continues

to the end of the line. Three special two-characters sequences exist: \#, \\ and \<newline>. Their effect is

described under ’backslashing’ above. Each − nonempty − line starts with a keyword, possibly preceded by

blank space. The keyword can be followed by a further specification. The two are separated by blank

space.

Variable definitions use the keyword var and look like this:

var NAME=text

The name can be any identifier, the text may contain any character. Blank space before the equal sign is not

-3-

part of the NAME. Blank space after the equal is considered as part of the text. The text is scanned for

variable replacement before it is associated with the variable name.

The start of a transformation definition is indicated by the keyword name. The last line of such a definition

contains the keyword end. The lines in between associate properties to a transformation and may be pre-

sented in any order. The identifier after the name keyword determines the name of the transformation. This

name is used for debugging and by the −R flag. The keywords are used to specify which input suffices are

recognized by that transformation, the program to run, the arguments to be handed to that program and the

name or suffix of the resulting output file. Tw o keywords are used to indicate which run-time startoffs and

libraries are needed. The possible keywords are:

from

followed by a sequence of suffices. Each file with one of these suffices is allowed as input file. Pre-

processor transformations do not need the from keyword. All other transformations do.

to

followed by the suffix of the output file name or in the case of a linker the output file name.

program

followed by name of the load file of the program, a pathname most likely starts with either a / or

{EM}. This keyword must be present, the remainder of the line is subject to backslashing and vari-

able replacement.

mapflag

The mapflags are used to grab flags given to ack and pass them on to a specific transformation. This

feature uses a few simple pattern matching and replacement facilities. Multiple occurrences of this

keyword are allowed. This text following the keyword is subjected to backslashing. The keyword is

followed by a match expression and a variable assignment separated by blank space. As soon as both

description files are read, ack looks at all transformations in these files to find a match for the flags

given to ack. The flags −m, −o, −O, −r, −v, −g, −−c, −t, −k, −R and −−. are specific to ack and not

handed down to any transformation. The matching is performed in the order in which the entries

appear in the definition. The scanning stops after first match is found. When a match is found, the

variable assignment is executed. A * in the match expression matches any sequence of characters, a

* in the right hand part of the assignment is replaced by the characters matched by the * in the

expression. The right hand part is also subject to variable replacement. The variable will probably

be used in the program arguments. The −l flags are special, the order in which they are presented to

ack must be preserved. The identifier LNAME is used in conjunction with the scanning of −l flags.

The value assigned to LNAME is used to replace the flag. The example further on shows the use of

all this.

args

The keyword is followed by the program call arguments. It is subject to backslashing, variable

replacement, expression replacement, line splitting and IO replacement. The variables assigned to by

mapflags will probably be used here. The flags not recognized by ack or any of the transformations

are passed to the linker and inserted before all other arguments.

stdin

This keyword indicates that the transformation reads from standard input.

stdout

This keyword indicates that the transformation writes on standard output.

optimizer

The presence of this keyword indicates that this transformation is an optimizer. It can be followed by

a number, indicating the "level" of the optimizer (see description of the -O option in the ack(1ACK)

manual page).

priority

This − optional − keyword is followed by a number. Positive priority means that the transformation is

likely to be used, negative priority means that the transformation is unlikely to be used. Priorities can

also be set with a ack(1ACK) command line option. Priorities come in handy when there are several

-4-

implementations of a certain transformation. They can then be used to select a default one.

linker

This keyword indicates that this transformation is the linker.

combiner

This keyword indicates that this transformation is a combiner. A combiner is a program combining

several files into one, but is not a linker. An example of a combiner is the global optimizer.

prep

This − optional − keyword is followed an option indicating its relation to the preprocessor. The pos-

sible options are:

always the input files must be preprocessed

cond the input files must be preprocessed when starting with #

is this transformation is the preprocessor

rts

This − optional − keyword indicates that the rest of the line must be used to set the variable RTS, if it

was not already set. Thus the variable RTS is set by the first transformation executed which such a

property or as a result from ack’s program call name (acc, cc, apc or pc) or by the −.suffix flag.

need

This − optional − keyword indicates that the rest of the line must be concatenated to the HEAD and

TAIL variables. This is done once for every transformation used or indicated by one of the program

call names mentioned above or indicated by the −.suffix flag.

4. Conventions used in description files

Ack reads two description files. A few of the variables defined in the machine specific file are used

by the descriptions of the front-ends. Other variables, set by ack, are of use to all transformations.

Ack sets the variable EM to the home directory of the Amsterdam Compiler Kit. The variable

SOURCE is set to the name of the argument that is currently being massaged, this is useful for debugging.

The variable SUFFIX is set to the suffix of the argument that is currently being massaged.

The variable M indicates the directory in lib/{M}/tail_..... and NAME is the string to be defined by the pre-

processor with −D{NAME}. The definitions of {w}, {s}, {l}, {d}, {f} and {p} indicate EM_WSIZE,

EM_SSIZE, EM_LSIZE, EM_DSIZE, EM_FSIZE and EM_PSIZE respectively.

The variable INCLUDES is used as the last argument to cpp. It is used to add directories to the list of

directories containing #include files.

The variables HEAD, TAIL and RTS are set by ack and used to compose the arguments for the linker.

5. Example

Description for front-end

-5-

name cpp # the C-preprocessor

no from, it’s governed by the P property

to .i # result files have suffix i

program {EM}/lib/cpp # pathname of loadfile

mapflag −I* CPP_F={CPP_F?} −I* # grab −I.. −U.. and

mapflag −U* CPP_F={CPP_F?} −U* # −D.. to use as arguments

mapflag −D* CPP_F={CPP_F?} −D* # in the variable CPP_F

args {CPP_F?} {INCLUDES?} −D{NAME} −DEM_WSIZE={w} −DEM_PSIZE={p} \

−DEM_SSIZE={s} −DEM_LSIZE={l} −DEM_FSIZE={f} −DEM_DSIZE={d} <

The arguments are: first the −[IUD]...

then the include dir’s for this machine

then the NAME and size values finally

followed by the input file name

stdout # Output on stdout

prep is # Is preprocessor

end

name cem # the C-compiler proper

from .c # used for files with suffix .c

to .k # produces compact code files

program {EM}/lib/em_cem # pathname of loadfile

mapflag −p CEM_F={CEM_F?} −Xp # pass −p as −Xp to cem

mapflag −L CEM_F={CEM_F?} −l # pass −L as −l to cem

args −Vw{w}i{w}p{p}f{f}s{s}l{l}d{d} {CEM_F?}

the arguments are the object sizes in

the −V... flag and possibly −l and −Xp

stdin # input from stdin

stdout # output on stdout

prep always # use cpp

rts .c # use the C run-time system

need .c # use the C libraries

end

name decode # make human readable files from compact code

from .k.m # accept files with suffix .k or .m

to .e # produce .e files

program {EM}/lib/em_decode # pathname of loadfile

args < # the input file name is the only argument

stdout # the output comes on stdout

end

-6-

Example of a backend, in this case the EM assembler/loader.

var w=2 # wordsize 2

var p=2 # pointersize 2

var s=2 # short size 2

var l=4 # long size 4

var f=4 # float size 4

var d=8 # double size 8

var M=em22

var NAME=em22 # for cpp (NAME=em22 results in #define em22 1)

var LIB=lib/{M}/tail_ # part of file name for libraries

var RT=lib/{M}/head_ # part of file name for run-time startoff

var SIZE_FLAG=−sm # default internal table size flag

var INCLUDES=−I{EM}/include # use {EM}/include for #include files

name asld # Assembler/loader

from .k.m.a # accepts compact code and archives

to e.out # output file name

program {EM}/lib/em_ass # load file pathname

mapflag −l* LNAME={EM}/{LIB}* # e.g. −ly becomes

#{EM}/mach/int/lib/tail_y

mapflag −+* ASS_F={ASS_F?} −+* # recognize −+ and −−

mapflag −−* ASS_F={ASS_F?} −−*

mapflag −s* SIZE_FLAG=−s* # overwrite old value of SIZE_FLAG

args {SIZE_FLAG} \

({RTS}:.c={EM}/{RT}cc) ({RTS}:.p={EM}/{RT}pc) −o > < \

(.p:{TAIL}={EM}/{LIB}pc) \

(.c:{TAIL}={EM}/{LIB}cc.1s {EM}/{LIB}cc.2g) \

(.c.p:{TAIL}={EM}/{LIB}mon)

−s[sml] must be first argument

the next line contains the choice for head_cc or head_pc

and the specification of in- and output.

the last three args lines choose libraries

linker

end

The command ack −mem22 −v −v −I../h −L −ly prog.c would result in the following calls (with exec(II)):

1) /lib/cpp −I../h −I/usr/em/include −Dem22 −DEM_WSIZE=2 −DEM_PSIZE=2 \

−DEM_SSIZE=2 −DEM_LSIZE=4 −DEM_FSIZE=4 −DEM_DSIZE=8 prog.c

2) /usr/em/lib/em_cem −Vw2i2p2f4s2l4d8 −l

3) /usr/em/lib/em_ass −sm /usr/em/lib/em22/head_cc −o e.out prog.k

/usr/em/lib/em22/tail_y /usr/em/lib/em22/tail_cc.1s

/usr/em/lib/em22/tail_cc.2g /usr/em/lib/em22/tail_mon

