
ACK/CEM Compiler

Reference Manual

Erik H. Baalbergen

Department of Mathematics and Computer Science

Vrije Universiteit

Amsterdam

The Netherlands

11 February 2005

ACK/CEM Compiler

Reference Manual

Erik H. Baalbergen

Department of Mathematics and Computer Science

Vrije Universiteit

Amsterdam

The Netherlands

1. C Language

This section discusses the extensions to and deviations from the C language, as described in [1]. The

issues are numbered according to the reference manual.

2.2 Identifiers

Upper and lower case letters are different. The number of significant letters is 32 by default, but may

be set to another value using the −M option. The identifier length should be set according to the rest of the

compilation programs.

2.3 Keywords

asm

The keyword asm is recognized. However, the statement

asm(string);

is skipped, while a warning is given.

enum

The enum keyword is recognized and interpreted.

entry, fortran

The words entry and fortran are reserved under the restricted option. The words are not inter-

preted by the compiler.

2.4.1 Integer Constants

The type of an integer constant is the first of the corresponding list in which its value can be repre-

sented. Decimal: int, long, unsigned long; octal or hexadecimal: int, unsigned, long,

unsigned long; suffixed by the letter L or l: long, unsigned long.

2.4.3 Character Constants

A character constant is a sequence of 1 up to sizeof(int) characters enclosed in single quotes.

The value of a character constant ’c1c2
. . . cn’ is dn + M×dn−1 + . . . + M n−1×d2 + M n×d1, where M is 1 +

maximum unsigned number representable in an unsigned char, and di is the signed value (ASCII) of

character ci .

2.4.4 Floating Constants

The compiler does not support compile-time floating point arithmetic.

-2-

2.6 Hardware characteristics

The compiler is capable of producing EM code for machines with the following properties

• a char is 8 bits

• the size of int is equal to the word size

• the size of short may not exceed the size of int

• the size of int may not exceed the size of long

• the size of pointers is equal to the size of either short, int or long

4 What’s in a name?

char

Objects of type char are taken to be signed. The combination unsigned char is legal.

unsigned

The type combinations unsigned char, unsigned short and unsigned long are sup-

ported.

enum

The data type enum is implemented as described in Recent Changes to C (see appendix A). Cem

treats enumeration variables as if they were int.

void

Type void is implemented. The type specifies an empty set of values, which takes no storage space.

Fundamental types

The names of the fundamental types can be redefined by the user, using typedef.

7 Expressions

The order of evaluation of expressions depends on the complexity of the subexpressions. In case of

commutative operations, the most complex subexpression is evaluated first. Parameter lists are evaluated

from right to left.

7.2 Unary operators

The type of a sizeof expression is unsigned int.

7.13 Conditional operator

Both the second and the third expression in a conditional expression may include assignment opera-

tors. They may be structs or unions.

7.14 Assignment operators

Structures may be assigned, passed as arguments to functions, and returned by functions. The types

of operands taking part must be the same.

8.2 Type specifiers

The combinations unsigned char, unsigned short and unsigned long are imple-

mented.

-3-

8.5 Structure and union declarations

Fields of any integral type, either signed or unsigned, are supported, as long as the type fits in a word

on the target machine.

Fields are left adjusted by default; the first field is put into the left part of a word, the next one on the

right side of the first one, etc. The -Vr option in the call of the compiler causes fields to be right adjusted

within a machine word.

The tags of structs and unions occupy a different name space from that of variables and that of mem-

ber names.

9.7 Switch statement

The type of expression in

switch (expression) statement

must be integral. A warning is given under the restricted option if the type is long.

10 External definitions

See [4] for a discussion on this complicated issue.

10.1 External function definitions

Structures may be passed as arguments to functions, and returned by functions.

11.1 Lexical scope

Typedef names may be redeclared like any other variable name; the ice mentioned in §11.1 is walked

correctly.

12 Compiler control lines

Lines which do not occur within comment, and with # as first character, are interpreted as compiler

control line. There may be an arbitrary number of spaces, tabs and comments (collectively referred as

white space) following the #. Comments may contain newline characters. Control lines with only white

space between the # and the line separator are skipped.

The #include, #ifdef, #ifndef, #undef, #else and #endif control lines and line direc-

tives consist of a fixed number of arguments. The list of arguments may be followed an arbitrary sequence

of characters, in which comment is interpreted as such. (I.e., the text between /* and */ is skipped,

regardless of newlines; note that commented-out lines beginning with # are not considered to be control

lines.)

12.1 Token replacement

The replacement text of macros is taken to be a string of characters, in which an identifier may stand

for a formal parameter, and in which comment is interpreted as such. Comments and newline characters,

preceeded by a backslash, in the replacement text are replaced by a space character.

The actual parameters of a macro are considered tokens and are balanced with regard to (), {} and

[]. This prevents the use of macros like

CTL([)

Formal parameters of a macro must have unique names within the formal-parameter list of that

macro.

A message is given at the definition of a macro if the macro has already been #defined, while the

number of formal parameters differ or the replacement texts are not equal (apart from leading and trailing

white space).

-4-

Recursive use of macros is detected by the compiler.

Standard #defined macros are

__FILE__ name of current input file as string constant

__DATE__ curent date as string constant; e.g. "Tue Wed 2 14:45:23 1986"

__LINE__ current line number as an integer

No message is given if identifier is not known in

#undef identifier

12.2 File inclusion

A newline character is appended to each file which is included.

12.3 Conditional compilation

The #if, #ifdef and #ifndef control lines may be followed by an arbitrary number of

#elif constant-expression

control lines, before the corresponding #else or #endif is encountered. The construct

#elif constant-expression

some text

#endif /* corresponding to #elif */

is equivalent to

#else

#if constant-expression

some text

#endif /* corresponding to #if */

#endif /* corresponding to #else */

The constant-expression in #if and #elif control lines may contain the construction

defined(identifier)

which is replaced by 1, if identifier has been #defined, and by 0, if not.

Comments in skipped lines are interpreted as such.

12.4 Line control

Line directives may occur in the following forms:

#line constant

#line constant "filename"

#constant

#constant "filename"

Note that filename is enclosed in double quotes.

14.2 Functions

If a pointer to a function is called, the function the pointer points to is called instead.

15 Constant expressions

The compiler distinguishes the following types of integral constant expressions

• field-width specifier

-5-

• case-entry specifier

• array-size specifier

• global variable initialization value

• enum-value specifier

• truth value in #if control line

Constant integral expressions are compile-time evaluated while an effort is made to report overflow.

Constant floating expressions are not compile-time evaluated.

2. Compiler flags

−C Run the preprocessor stand-alone while maintaining the comments. Line directives are produced

whenever needed.

−Dname=string-of-characters

Define name as macro with string-of-characters as replacement text.

−Dname

Equal to −Dname=1.

−E Run the preprocessor stand alone, i.e., list the sequence of input tokens and delete any comments.

Line directives are produced whenever needed.

−Ipath

Prepend path to the list of include directories. To put the directories "include", "sys/h" and "util/h"

into the include directory list in that order, the user has to specify

-Iinclude -Isys/h -Iutil/h

An empty path causes the standard include directory (usually /usr/include) to be forgotten.

−Mn

Set maximum significant identifier length to n.

−n Suppress EM register messages. The user-declared variables are not stored into registers on the tar-

get machine.

−p Generate the EM fil and lin instructions in order to enable an interpreter to keep track of the current

location in the source code.

−P Equivalent with −E, but without line directives.

−R Interpret the input as restricted C (according to the language as described in [1]).

−Tpath

Create temporary files, if necessary, in directory path.

−Uname

Get rid of the compiler-predefined macro name, i.e., consider

#undef name

to appear in the beginning of the file.

−Vcm.n, −Vcm.ncm.n ...

Set the size and alignment requirements. The letter c indicates the simple type, which is one of

s(short), i(int), l(long), f(float), d(double) or p(pointer). If c is S or U, then n is taken to be the initial

alignment of structs or unions, respectively. The effective alignment of a struct or union is the least

common multiple of the initial struct/union alignment and the alignments of its members. The m

parameter can be used to specify the length of the type (in bytes) and the n parameter for the align-

ment of that type. Absence of m or n causes the default value to be retained. To specify that the bit-

fields should be right adjusted instead of the default left adjustment, specify r as c parameter.

−w Suppress warning messages

-6-

−−character

Set debug-flag character. This enables some special features offered by a debug and develop version

of the compiler. Some particular flags may be recognized, others may have surprising effects.

d Generate a dependency graph, reflecting the calling structure of functions. Lines of the form

DFA: calling-function: called-function

are generated whenever a function call is encountered.

f Dump whole identifier table, including macros and reserved words.

h Supply hash-table statistics.

i Print names of included files.

m Supply statistics concerning the memory allocation.

t Dump table of identifiers.

u Generate extra statistics concerning the predefined types and identifiers. Works in combination

with f or t.

x Print expression trees in human-readable format.

References

[1] Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language

[2] L. Rosler, Draft Proposed Standard - Pro gramming Language C, ANSI X3J11 Language Subcom-

mittee

[3] Erik H. Baalbergen, Dick Grune, Maarten Waage, The CEM Compiler, Informatica Manual IM-4,

Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

[4] Erik H. Baalbergen, Modeling global declarations in C, internal paper

-7-

Appendix A - Enumeration Type

The syntax is

enum-specifier:

enum { enum-list }

enum identifier { enum-list }

enum identifier

enum-list :

enumerator

enum-list , enumerator

enumerator :

identifier

identifier = constant-expression

The identifier has the same role as the structure tag in a struct specification. It names a particular enumera-

tion type.

The identifiers in the enum-list are declared as constants, and may appear whenever constants are

required. If no enumerators with = appear, then the values of the constants begin at 0 and increase by 1 as

the declaration is read from left to right. An enumerator with = gives the associated identifier the value

indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and, unlike structure tags and members, are

drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other

types.

-8-

Appendix B: C grammar in LL(1) form

The bold-faced and italicized tokens represent terminal symbols.

external definitions

program: external-definition*

external-definition: ext-decl-specifiers [declarator [function | non-function] | ’;’] | asm-statement

ext-decl-specifiers: decl-specifiers?

non-function: initializer? [’,’ init-declarator]* ’;’

function: declaration* compound-statement

declarations

declaration: decl-specifiers init-declarator-list? ’;’

decl-specifiers: other-specifier+ [single-type-specifier other-specifier*]? | single-type-specifier other-specifier*

other-specifier: auto | static | extern | typedef | register | short | long | unsigned

type-specifier: decl-specifiers

single-type-specifier: type-identifier | struct-or-union-specifier | enum-specifier

init-declarator-list: init-declarator [’,’ init-declarator]*

init-declarator: declarator initializer?

declarator: primary-declarator [’(’ formal-list ? ’)’ | arrayer]* | ’*’ declarator

primary-declarator: identifier | ’(’ declarator ’)’

arrayer: ’[’ constant-expression? ’]’

formal-list: formal [’,’ formal]*

formal: identifier

enum-specifier: enum [enumerator-pack | identifier enumerator-pack?]

enumerator-pack: ’{’ enumerator [’,’ enumerator]* ’,’? ’}’

enumerator: identifier [’=’ constant-expression]?

struct-or-union-specifier: [struct | union] [struct-declaration-pack | identifier struct-declaration-pack?]

struct-declaration-pack: ’{’ struct-declaration+ ’}’

struct-declaration: type-specifier struct-declarator-list ’;’?

struct-declarator-list: struct-declarator [’,’ struct-declarator]*

struct-declarator: declarator bit-expression? | bit-expression

bit-expression: ’:’ constant-expression

initializer: ’=’? initial-value

cast: ’(’ type-specifier abstract-declarator ’)’

abstract-declarator: primary-abstract-declarator [’(’ ’)’ | arrayer]* | ’*’ abstract-declarator

primary-abstract-declarator: [’(’ abstract-declarator ’)’]?

statements

statement:

expression-statement

| label ’:’ statement

| compound-statement

-9-

| if-statement

| while-statement

| do-statement

| for-statement

| switch-statement

| case-statement

| default-statement

| break-statement

| continue-statement

| return-statement

| jump

| ’;’

| asm-statement

;

expression-statement: expression ’;’

label: identifier

if-statement: if ’(’ expression ’)’ statement [else statement]?

while-statement: while ’(’ expression ’)’ statement

do-statement: do statement while ’(’ expression ’)’ ’;’

for-statement: for ’(’ expression? ’;’ expression? ’;’ expression? ’)’ statement

switch-statement: switch ’(’ expression ’)’ statement

case-statement: case constant-expression ’:’ statement

default-statement: default ’:’ statement

break-statement: break ’;’

continue-statement: continue ’;’

return-statement: return expression? ’;’

jump: goto identifier ’;’

compound-statement: ’{’ declaration* statement* ’}’

asm-statement: asm ’(’ string ’)’ ’;’

expressions

initial-value: assignment-expression | initial-value-pack

initial-value-pack: ’{’ initial-value-list ’}’

initial-value-list: initial-value [’,’ initial-value]* ’,’?

primary: identifier | constant | string | ’(’ expression ’)’

secundary: primary [index-pack | parameter-pack | selection]*

index-pack: ’[’ expression ’]’

parameter-pack: ’(’ parameter-list? ’)’

selection: [’.’ | ’−>’] identifier

parameter-list: assignment-expression [’,’ assignment-expression]*

postfixed: secundary postop?

-10-

unary: cast unary | postfixed | unop unary | size-of

size-of: sizeof [cast | unary]

binary-expression: unary [binop binary-expression]*

conditional-expression: binary-expression [’?’ expression ’:’ assignment-expression]?

assignment-expression: conditional-expression [asgnop assignment-expression]?

expression: assignment-expression [’,’ assignment-expression]*

unop: ’*’ | ’&’ | ’−’ | ’!’ | ’˜ ’ | ’++’ | ’−−’

postop: ’++’ | ’−−’

multop: ’*’ | ’/’ | ’%’

addop: ’+’ | ’−’

shiftop: ’<<’ | ’>>’

relop: ’<’ | ’>’ | ’<=’ | ’>=’

eqop: ’==’ | ’!=’

arithop: multop | addop | shiftop | ’&’ | ’ˆ ’ | ’|’

binop: arithop | relop | eqop | ’&&’ | ’||’

asgnop: ’=’ | ’+’ ’=’ | ’−’ ’=’ | ’*’ ’=’ | ’/’ ’=’ | ’%’ ’=’

| ’<<’ ’=’ | ’>>’ ’=’ | ’&’ ’=’ | ’ˆ ’ ’=’ | ’|’ ’=’

| ’+=’ | ’−=’ | ’*=’ | ’/=’ | ’%=’

| ’<<=’ | ’>>=’ | ’&=’ | ’ˆ=’ | ’|=’

constant: integer | floating

constant-expression: assignment-expression

identifier: identifier | type-identifier

