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ABSTRACT

The Target Optimizer is one of several optimizers that are part of the Amsterdam
Compiler Kit. It operates directly on assembly code, rather than on a higher level inter-
mediate code, as the Peephole Optimizer and Global Optimizer do. Consequently, the
Target Optimizer can do optimizations that are highly machine-dependent.

Each target machine has its own Target Optimizer. New optimizers are generated
by the Target Optimizer Generator, which uses a machine-dependent table as input. This
document contains full information on how to write such a table for a new machine. It
also discusses the implementation of the Target Optimizer and its generator.

1. Introduction

This document describes the target optimizer component of the Amsterdam Compiler Kit (ACK)
.[Tane81a, Tane83a, Tane83b] Optimization takes place in several parts of ACK compilers, most notably in
the Peephole Optimizer[Tane82a] and the Global Optimizer,[Bal85b, Bal85a] which are both language- and
machine-independent, and in the machine-specific code generators.[Tane84a] The target optimizer is the
finishing touch in this sequence of optimizers. It can be used to capture those optimizations that are hard to
express in the other parts of ACK. These optimizations will typically be very machine-specific.

The target optimizer operates on the assembly code of some target machine. Hence there is one tar-
get optimizer per machine. However, just as for the ACK code generators and assemblers, a framework has
been build that allows easy generation of target optimizers out of machine-independent parts and a
machine-dependent description table (see figure 1.). So the major part of the code of a target optimizer is
shared among all target optimizers.
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target optimizer

Figure 1: Generation of a target optimizer.
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This document focusses on the description of the machine-dependent table. In chapter 2 we give an
informal introduction to the optimization algorithm and to the definition of the table format. Chapters 3
and 4 discuss the implementation of the target optimizer and the target optimizer generator. Appendix A
gives full information for writing a description table.

2. Global structure of the target optimizer

The target optimizer is based on the well understood model of a peephole optimizer.[Aho78a] It con-
tains a machine-dependent table of (pattern,replacement) pairs. Each pattern describes a sequence of one or
more assembler instructions that can be replaced by zero or more equivalent, yet cheaper, instructions (the
‘replacement’). The optimizer maintains a window that moves over the input. At any moment, the window
contains some contiguous part of the input. If the instructions in the current window match some pattern in
the table, they are replaced by the corresponding replacement; else, the window moves one instruction to
the right.

In the remainder of this section we will give an informal description of the machine-dependent table.
A more precise definition is given in appendix A. We will first discuss the restrictions put on the format of
the assembly code.

2.1. Assumptions about the assembly code format

We assume that a line of assembly code begins with an instruction mnemonic (opcode), followed by
zero or more operands. The mnemonic and the first operand must be separated by a special character (e.g.
a space or a tab). Likewise, the operands must be separated by a special character (e.g. a comma). These
separators need not be the same for all machines.

2.2. Informal description of the machine-dependent tables
The major part of the table consists of (pattern,replacement) pairs called entries.

A pattern is a list of instruction descriptions. Each instruction description describes the instruction
mnemonic and the operands.

A mnemonic is described either by a string constant or by the keyword ANY. As all entities dealt
with by the target optimizer are strings, string constants do not contain quotes. A string constant matches
only itself. ANY matches every instruction mnemonic.

Examples of mnemonic descriptions:

add
sub.1l
mulw3
ANY

An operand can also be described by a string constant.
Examples:

(sp)+
r5
-4(r6)

Alternatively, it can be described by means of a variable name. Variables have values which are strings.
They have to be declared in the table before the patterns. Each such declaration defines the name of a vari-
able and a restriction to which its value is subjected.

Example of variable declarations:

CONST { VAL[O] == 'S’ };
REG { VAL[O0] == 'r’ && VAL[1l] >= ’'0’ && VAL[1l] <= '3’ &&



VAL[2] == '\O0’ };
X { TRUE };

The keyword VAL denotes the value of the variable, which is a null-terminated string. An operand descrip-
tion given via a variable name matches an actual operand if the actual operand obeys the associated restric-
tion.

CONST matches $1, $-5, S$foo etc.
REG matches r0, rl, r2 and r3
X matches anything

The restriction (between curly braces) may be any legal "C"[Kern78a] expression. It may also contain calls
to user-defined procedures. These procedures must be added to the table after the patterns.

Example:
FERMAT_NUMBER { VAL[0] == '$’ && is_fermat_number (&VAL[1]) };

An operand can also be described by a mixture of a string constant and a variable name. The most general
form allowed is:

string_constant] variable_name string_constant2
Example:
(REG)+ matches (r0)+, (rl)+, (r2)+ and (r3)+

Any of the three components may be omitted, so the first two forms are just special cases of the general
form. The name of a variable can not be used as a string constant. In the above context, it is impossible to
define an operand that matches the string "REG". This limitation is of little consequence, as the table writer
is free to choose the names of variables. This approach, however, avoids the need for awkward escape
sequences.

A pattern consists of one or more instruction descriptions (separated by a colon) followed by an

optional constraint. A pattern "P1: P2 : .. : Pn C" matches the sequence of instructions "I1 12 .. In" if:

@) for each i, 1 <=1 <= n, Pi matches Ii, as described above;

(i1) multiple occurrences of the same variable name or of the keyword ANY stand for the same values
throughout the pattern;

(iii) the optional constraint C is satisfied, i.e. it evaluates to TRUE.

The pattern:

dec REG : move.b CONST, (REG)
matches:

dec r0 : move.b $4, (r0)
but not:

dec r0 : move.b $4, (rl)
(as the variable REG matches two different strings).

If a pattern containing different registers must be described, extra names for a register should be declared,
all sharing the same restriction.



Example:
REG1,REG2 { VAL[O0] == 'r’ && ..... b

addl3 REG1,REG1l,REGZ : subl2 REG2,REG1

The optional constraint is an auxiliary "C" expression (just like the parameter restrictions). The
expression may refer to the variables and to ANY.
Example:

move REG1,REG2 { REG1[1l] == REG2[1] + 1 }
matches

move rl,r0
move r2,rl
move r3,r2

The replacement part of a (pattern,replacement) table entry has the same structure as a pattern, except
that:

(i) it may not contain an additional constraint;
(i) it may be empty.

A replacement may also refer to the values of variables and ANY.

2.3. Examples

This section contains some realistic examples for optimization on PDP-11 and Vax assembly code.

2.3.1. Vax examples

Suppose the table contains the following declarations:

X, LOG { TRUE };

LAB { VAL[0] == 'L’ }; /* e.g. L0017 */
A { no_side_effects (VAL) };

NUM { is_number (VAL) };

The procedure "no_side_effects" checks if its argument contains any side effects, i.e. auto increment or auto
decrement. The procedure "is_number" checks if its argument contains only digits. These procedures must
be supplied by the table-writer and must be included in the table.

entry: addl3 X,A,A -> addl2 X,A;
This entry changes a 3-operand instruction into a cheaper 2-operand instruction. An optimization like:
addl3 r0, (r2)+, (r2)+ -> addl2 r0, (r2)+

is illegal, as r2 should be incremented twice. Hence the second argument is required to be side-effect free.
entry: addw2 $-NUM,X -> subw2 S$NUM, X;

An instruction like "subw2 $5,r0" is cheaper than "addw2 $-5,r0", because constants in the range 0 to 63
are represented very efficiently on the Vax.

entry: bitw S$NUM,A : jneqg LAB
{ is_poweroftwo (NUM, LOG) } -> jbs SLOG, A, LAB;

A "bitw x,y" sets the condition codes to the bitwise "and" of x and y. A "jbs n,x,1" branches to 1 if bit n of x



is set. So, for example, the following transformation is possible:
bitw $32,r0 : jneq L0017 -> Jbs $5,r0,L0017

The user-defined procedure "is_poweroftwo" checks if its first argument is a power of 2 and, if so, sets its
second argument to the logarithm of the first argument. (Both arguments are strings). Note that the variable
LOG is not used in the pattern itself. It is assigned a (string) value by "is_poweroftwo" and is used in the
replacement.

2.3.2. PDP-11 examples

Suppose we have the following declarations:

X { TRUE };

A { no_side_effects (VAL) };

L1, L2 { VAL[0] == 'I" };

REG { VAL[0] == 'r’ && VAL[1l] >= ’'0’ && VAL[1l] <= '57
VAL[2] == ’'\0’ };

The implementation of "no_side_effects" may of course differ for the PDP-11 and the Vax.
entry: mov REG,A : ANY A,X -> mov REG,A : ANY REG,X ;

This entry implements register subsumption. If A and REG hold the same value (which is true after "mov
REG,A") and A is used as source (first) operand, it is cheaper to use REG instead.

entry: Jjeq L1 : jbr L2 : labdef L1 -> Jjne L2 : labdef L1;

The "jeq L1" is a "skip over an unconditional jump". "labdef L1" denotes the definition (i.e. defining occur-
rence) of label L1. As the target optimizer has to know how such a definition looks like, this must be
expressed in the table (see Appendix A).

entry: add $01,X { carry_dead(REST) } -> inc X;

On the PDP-11, an add-one is not equivalent to an increment. The latter does not set the carry-bit of the
condition codes, while the former does. So a look-ahead is needed to see if the rest of the input uses the
carry-bit before changing the condition codes. A look-ahead of one instruction is provided by the target
optimizer. This will normally be sufficient for compiler-generated code. The keyword REST contains the
mnemonic of the first instruction of the rest of the input. If this instruction uses the carry-bit (e.g. an adc,
subc, bhis) the transformation is not allowed.

3. Implementation of the target optimizer

The target optimizer reads one input file of assembler instructions, processes it, and writes the opti-
mized code to the output file. So it performs one pass over the input.

3.1. The window mechanism

The optimizer uses a window that moves over the input. It repeatedly tries to match the instructions
in the window with the patterns in the table. If no match is possible, the window moves one instruction for-
wards (to the right). After a successful match the matched instructions are removed from the window and
are replaced by the replacement part of the table entry. Furthermore, the window is moved a few instruc-
tions backwards, as it is possible that instructions that were rejected earlier now do match. For example,
consider the following patterns:

cmp $0, X -> tst X ;
mov REG,X : tst X -> move REG.X ; /* redundant test */

If the input is:

&&



mov r0,foo : cmp $0, foo

then the first instruction is initially rejected. However, after the transformation
cmp $0, foo -> tst foo

the following optimization is possible:

mov r0O,foo : tst foo -> mov r0,foo

The window is implemented as a queue. Matching takes place at the head of the queue. New
instructions are added at the tail. If the window is moved forwards, the instruction at the head is not yet
written to the output, as it may be needed later on. Instead it is added to a second queue, the backup queue.
After a successful match, the entire backup queue is inserted at the front of the window queue, which effec-
tively implements the shift backwards.

Both queues have the length of the longest pattern in the table. If, as a result of a forward window
move, the backup queue gets full, the instruction at its head is outputted and removed. Instructions are read
from the input whenever the window queue contains fewer elements than the length of the longest pattern.

3.2. Pattern matching

Pattern matching is done in three steps:

6] find patterns in the table whose instruction mnemonics match the mnemonics of the instructions in
the current window;

(i1) check if the operands of the pattern match the operands of the instructions in the current window;

(iii) check if the optional constraint is satisfied.

For step (i) hashing is used. The mnemonic of the first instruction of the window is used to determine a list
of possible patterns. Patterns starting with ANY are always tried.

Matching of operand descriptions against actual operands takes place as follows. The general form
of an operand description is:

string_constant] variable_name string_constant2

The actual operand should begin with string_constantl and end on string_constant2. If so, these strings are
stripped from it and the remaining string is matched against the variable. Matching a string against a vari-
able is defined as follows:

1. initially (before the entire pattern match) all variables are uninstantiated;

2. matching a string against an uninstantiated variable succeeds if the restriction associated with the
variable is satisfied. As a side effect, it causes the variable to be instantiated to the string;

3. matching a string against an instantiated variable succeeds only if the variable was instantiated to the
same string.

Matching an actual mnemonic against the keyword ANY is defined likewise.

The matching scheme implements the requirement that multiple occurrences of the same variable
name or of the keyword ANY should stand for the same values throughout the entire pattern (see section
2).

Both the parameter restriction of 2. and the constraint of step (iii) are checked by executing the "C"
expression.

3.3. Data structures

The most important data structure is the representation of the input instructions. For every instruc-
tion we use two representations:

(1)  the textual representation, i.e. the exact code as it appeared in the input;

(i)  a structural representation, containing the opcode and the operands.



The opcode of an instruction is determined as soon as it is read. If the line contains a label definition, the
opcode is set to "labdef", so a label definition is treated like a normal instruction.

The operands of an instruction are not determined until they are needed, i.e. until step (i) of the pat-
tern matching process has succeeded. For every instruction we keep track of a state. After the opcode has
successfully been determined, the state is OPC_ONLY. Once the operands have been recognized, the state
is set to DONE. If the opcode or operands can not be determined, or if the instruction cannot be optimized
for any other reason (see Appendix A), the state is set to JUNK and any attempt to match it will fail.

For each table entry we record the following information:
6] the length of the pattern (i.e. the number of instruction descriptions)
(i1) a description of the instructions of the pattern
(iii) the length of the replacement
@iv) a description of the instructions of the replacement.
The description of an instruction consists of:
(i)  the opcode
(i) for each operand, a description of the operand.

The description of an operand of the form:
string_constant] variable_name string_constant2

contains:

(1)  both string constants

(i1)  the number of the variable.

Each declared variable is assigned a unique number. For every variable we maintain:
(i)  its state (instantiated or not instantiated)

(ii)  its current value (a string).

The restrictions on variables and the constraints are stored in a switch-statement, indexed by variable num-
ber and entry number respectively.

4. Implementation of the target optimizer generator

The target optimizer generator (fopgen) reads a target machine description table and produces two

files:

gen.h: contains macro definitions for machine parameters that were changed in the parameter section of
the table (see appendix A) and for some attributes derived from the table (longest pattern, num-
ber of patterns, number of variables).

gen.c: contains the entry description tables, code for checking the parameter restrictions and con-

straints (switch statements) and the user-defined procedures.
These two files are compiled together with some machine-independent files to produce a target optimizer.

Topgen is implemented using the LL(1) parser generator system LLgen ,[Jaco85a] a powerful tool of
the Amsterdam Compiler Kit. This system provides a flexible way of describing the syntax of the tables.
The syntactical description of the table format included in Appendix A was derived from the LLgen syntax
rules.

The parser uses a simple, hand-written, lexical analyzer (scanner). The scanner returns a single char-
acter in most cases. The recognition of identifiers is left to the parser, as this eases the analysis of operand
descriptions. Comments are removed from the input by the scanner, but white space is passed to the parser,
as it is meaningful in some contexts (it separates the opcode description from the description of the first
operand).

Topgen maintains two symbol tables, one for variable names and one for tunable parameters. The
symbol tables are organized as binary trees.
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Appendix A

In this appendix we present a complete definition of the target optimizer description table format.
This appendix is intended for table-writers. We use syntax rules for the description of the table format.
The following notation is used:

{a} zeroor more of a
[a] zero or one of a
ab a followed by b
alb aorb

Terminals are given in quotes, as in ’;’.

The table may contain white space and comment at all reasonable places. Comments are as in "C",
so they begin with /* and end on */. Identifiers are sequences of letters, digits and the underscore (’_’),
beginning with a letter.

4 4

o9 .
070y

table -> {parameter_line} ’'%%;’ {variable_declaration}
{entry} ’%%;’ user_routines.

A table consists of four sections, containing machine-dependent constants, variable declarations, pattern
rules and user-supplied subroutines.

4 4

parameter_line -> identifier value ’;

A parameter line defines some attributes of the target machines assembly code. For unspecified parameters
default values apply. The names of the parameters and the corresponding defaults are shown in table 1.

OPC_TERMINATOR T
OP_SEPARATOR N

LABEL_STARTER T
LABEL_TERMINATOR 2’
MAXOP 2
MAXOPLEN 25
MAX_OPC_LEN 10
MAXVARLEN 25
MAXLINELEN 100
PAREN_OPEN not defined
PAREN_CLOSE not defined

table 1: parameter names and defaults

The OPC_TERMINATOR is the character that separates the instruction mnemonic from the first operand
(if any). The OP_SEPARATOR separates adjacent operands. A LABEL_STARTER is the first character of
an instruction label. (Instruction labels are assumed to start with the same character). The LABEL_TER-
MINATOR is the last character of a label definition. It is assumed that this character is not used in an
applied occurrence of the label identifier. For example, the defining occurrence may be "I0017:" and the
applied occurrence may be "I0017" as in "jmp 10017". MAXOP defines the maximum number of operands
an instruction can have. MAXOPLEN is the maximum length (in characters) of an operand.
MAX_OPC_LEN is the maximum length of an instruction opcode. MAXVARLEN is the maximum length
of a declared string variable. As variables may be set by user routines (see "bitw" example for the Vax) the
table-writer must have access to this length and must be able to change it. MAXLINELEN denotes the
maximum length of a line of assembly code. PAREN_OPEN and PAREN_CLOSE must be used when the
operand separator can also occur within operands, between parentheses of some kind. In this case,
PAREN_OPEN must be set to a string containing the opening parentheses, and PAREN_CLOSE must be
set to a string containing the closing parentheses.

If a line of assembly code violates any of the assumptions or exceeds some limit, the line is not opti-
mized. Optimization does, however, proceed with the rest of the input.
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variable_declaration -> identifier {’,’ identifier} restriction ’;

restriction -> /{’ anything "}’

A variable declaration declares one or more string variables that may be used in the patterns and in the
replacements. If a variable is used as part of an operand description in a pattern, the entire pattern can only
match if the restriction evaluates to TRUE. If the pattern does match, the variable is assigned the matching
part of the actual operand. Variables that are not used in a pattern are initialized to null-strings and may be
assigned a value in the constraint-part of the pattern.

The restriction must be a legal "C" expression. It may not contain a closing bracket (’}’). Inside the
expression, the name VAL stands for the part of the actual (matching) operand. The expression may con-
tain calls to procedures that are defined in the user-routines section.

entry -> pattern ’'->’ replacement ;'
pattern —-> instruction_descr
{ ":’ instruction_descr }
constraint
replacement -> [ instruction_descr { ’:’ instruction_descr }

instruction_descr -> opcode
white
[ operand_descr { ’,’ operand_descr } ]

constraint -> {’ anything "}’

operand_descr -> [ string_constant ]
[ variable_name ]
[ string_constant ]

variable_name —-> identifier

opcode -> anything

The symbol *white’ stands for white space (space or tab). An opcode can be any string not containing the
special symbols ’;’, ’{’, ’}’, ’:’, ’,), ’->’ or white space. To be recognized, it must begin with a letter. The
opcode should either be a mnemonic of a target machine instruction or it should be one of the keywords

ANY and labdef. ANY matches any actual opcode. labdef matches only label definitions.

If an operand description contains an identifier (as defined earlier), it is checked if the identifier is the
name of a declared variable. This effects the semantics of the matching rules for the operand, as described
in section 2. An operand may contain at most one such variable name.

The constraint must be a legal "C" expression, just as the operand restriction. It may call user-
defined procedures and use or change the value of declared variables. It may also use the string variable
REST, which contains the mnemonic of the first instruction of the rest of the input. (REST is a null-string if
this mnemonic can not be determined).

user_routines —-> anything

The remainder of the table consists of user-defined subroutines.
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